
Sede amministrativa: Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi Civita”

CORSO DI DOTTORATO DI RICERCA IN SCIENZE MATEMATICHE

CURRICULUM MATEMATICA COMPUTAZIONALE

CICLO XXXIV

Topics in Numerical Linear Algebra for
High-Performance Computing

Tesi redatta con il contributo finanziario di beanTech Srl

Coordinatore
Ch.mo Prof. Martino Bardi

Supervisore
Ch.mo Prof. Fabio Marcuzzi

Dottoranda
Monica Dessole

Sommario

Il problema di risolvere in maniera veloce e robusta sistemi lineari di grandi
dimensioni, nelle sue varie declinazioni, è il cuore di svariate applicazioni nu-
meriche in molti campi, dalla stastistica all’ingegneria, dalle geoscienze alla
diagnostica medica per immagini e molti altri. Questo è un problema classico
in algebra lineare numerica, che gode di rinnovato interesse se, come nel lavoro
qui presente, ci interessiamo a problemi mal posti, dove la matrice non ha rango
pieno e la soluzione può non essere unica, o alle emergenti architetture many-
cores come le schede grafiche o GPU. La prima parte di questa tesi è dedicata
alla risoluzione efficiente di problemi ai minimi quadrati dove la matrice della
funzione obiettivo può non avere rango pieno, e di problemi ai minimi quadrati
con vincoli di nonnegatività. Queste classi di problemi sono particolarmente
impegnative poiché la loro risoluzione esatta richiede tecniche di ricerca enumer-
ativa, data la loro natura combitatorica, con conseguenti difficoltà nel derivare
algoritmi ad alte prestazioni. A tal fine deriviamo un algoritmo a blocchi per la
selezione di colonne, investighiamo le proprietà dei metodi ottenuti da un punto
di vista teorico in termini di accuratezza della soluzione e analizziamo le per-
formance ottenute rispetto agli algoritmi stato dell’arte, mostrando i risultati
di un’esaustiva campagna di esperimenti. In particolare, il solutore ai min-
imi quadrati nonnegativi qui proposto favorisce naturalmente la sparsità della
soluzione e perciò può essere adoperato in applicazioni di compressed sensing.
Come applicazione rilavante, presentiamo un pacchetto numerico per la com-
pressione quasi G-ottimale di misure di probabilità finite in più dimensioni per
la regressione polinomiale di grado elevato basato sulla risoluzioni di problemi ai
minimi quadrati nonnegativi. La seconda parte della tesi affronta l’impegnativa
questione su come adattare i solutori per sistemi lineari con matrici sparse, in-
tese qui come quelle matrici nelle quali la maggior parte degli elementi sono
nulli, alle architetture moderne e future proponendo metodi specificatamente
pensati per le piattaforme hardware ibride e massivamente parallele oggigiorno
disponibili. Ci dedichiamo al design e all’implementazione efficiente di solutori
lineari di tipo diretto, cioè basati su fattorizzazioni matriciali, per la risoluzione
di una classe particolare di sistemi lineari con matrici a blocchi derivanti, ad
esempio, dalla risoluzione numerica di problemi di controllo ottimo. Nello speci-
fico, discutiamo l’utilizzo di paradigmi di programmazione parallela innovativi
applicati ai solutori esistenti per migliorarne la scalabilità, cioè la capacità di
gestire una mole di lavoro crescente. Per la risoluzione di sistemi lineari sparsi, i

i

metodi iterativi sono generalmente ritenuti più adatti per l’implementazione su
architetture parallele in quanto basati su operazioni semplici, quali il prodotto
matrice-vettore. Questi metodi vengono spesso accoppiati con una tecnica di
precondizionamento, per migliorarne la velocità di convergenza. Uno dei pre-
condizionatori generici più diffusi ed efficaci è il precondizionatore ILU, basato
sulla risoluzione di sistemi triagolari sparsi, un calcolo intrinsecamente sequen-
taziale, e la sua applicazione risulta essere l’operazione più dispendiosa sulle
architetture parallele. In questo lavoro affrontiamo la risoluzione dei problemi
algebrici derivanti dalla simulazione di flussi incomprimibili con densità vari-
abile e mostriamo che un adeguato approccio iterativo per la risoluzione dei
sistemi triangolari risultanti dall’applicazione del precondizionatore ILU si riv-
ela robusto ed efficiente sulle architetture parallele.

ii

Abstract

The heart of numerical applications from a very broad range of domains, from
statistics to engineering, geophysics, medical imaging and many others, consists
in the fast and accurate solution of large size linear systems in many flavors.
This is a classic topic in numerical linear algebra of renewed interest if, like in
the present work, we address to large ill-posed problems, in which the matrix
is possibly rank-deficient and the solution may not be unique, or to emerging
hardware technologies like many-cores architectures such as Graphic Processing
Units (GPUs). The first part of this thesis is devoted to the efficient solution
of numerically rank-deficient least squares and nonnegative least squares prob-
lems. Such problems are particularly challenging and their exact solution would
require exhaustive-search algorithms and thus their complexity is combinato-
rial, with a consequent difficulty to achieve high performances in computations.
To this aim, we devise a new block column selection strategy, we investigate
the derived methods with respect to accuracy of the solution found from the
theoretical point of view and analyze their performance against the state-of-
the-art algorithms, showing results with an extensive campaign of experiments.
In particular, the nonnegative least squares solver presented naturally produces
sparse solutions and it can be employed in many applications in the field of
compressed sensing. As a relevant application, we present a numerical package
for the computation of compressed multivariate near G-optimal finite proba-
bility measures for polynomial regression design of general degree by means of
nonnegative least squares problems. In the second part of this thesis, we target
the challenging question of how linear solvers for sparse matrices, intended here
as matrices mostly filled up with zeros, can be adapted to modern and future
computing facilities by proposing numerical methods specifically designed for
the highly parallel and hybrid hardware platforms available nowadays. We first
address the efficient design and implementation of parallel direct solvers, that
is based upon matrix factorization, for a particular class of linear systems with
block structured matrices, arising e.g. in optimal control problems. In partic-
ular, we discuss the use of novel parallel programming paradigms on existing
direct solvers in order to improve their scalability, intended as the ability to solve
problems of larger and larger size. When dealing with sparse linear systems,
iterative methods are generally appreciated to be more suited for parallel ar-
chitectures, as they are based upon simple computations such as matrix-vector
multiplication. These methods are often coupled with a preconditioner in or-

iii

der to improve the rate of convergence. One of the most popular and powerful
general purpose is the ILU preconditioner, that relies on the direct solution
of sparse triangular systems, an inherently sequential task, and its application
turns out to be the most time consuming operation on parallel architectures.
In this work we deal with the solution of the algebraic problems arising from
the simulation of incompressible flows with variable density and we show how
an adequate iterative approach to the parallel solution of the triangular systems
that result from the ILU preconditioner, turns out to be robust and efficient on
massively parallel architectures.

iv

Acknowledgments

My deepest gratitude goes to Prof. Fabio Marcuzzi, who guided me through my
undergraduate and graduate studies. This work would not have been possible if
he hadn’t supported me from the very beginning, with his positive and constant
encouragement and the helpful discussions. I am also very grateful to Prof.
Marco Vianello for his pleasant and fruitful collaboration and for providing me
with useful ideas and hints. I would like to thank the referees of the present
thesis and of the papers here contained, who contributed with their helpful
comments to substantially improve the quality of this work.
I am grateful to all the people belonging to the research community of Padova,
especially to the colleagues who shared this venture with me. In this context, I
also would like to thank the company beanTech Srl for their financial support
enabling this research.
Last but not least, I would like to thank my family, my father Ottavio and
my brother Mattia, and Giorgio, who always believe in me, and all my friends
around the world for their less scientific, but nevertheless equally important
support.

v

Contents

Sommario i

Abstract iii

Acknowledgements v

Contents vi

List of Figures ix

List of Tables xi

List of Algorithms xii

1 Introduction 1
1.1 Motivation and goals . 1
1.2 Thesis outline and contributions 2
1.3 Notation . 6

I High-performance algorithms for dense numerical lin-
ear algebra 8

2 Deviation maximization for column selection 9
2.1 Preliminary results . 9

2.1.1 About Singular Values . 9
2.1.2 About Strictly Diagonally Dominant matrices 11

2.2 The deviation maximization algorithm 13
2.3 Implementation of deviation maximization algorithm 17

3 Rank-revealing QR factorization 19
3.1 Rank-Revealing QR decompositions 20

3.1.1 QR factorization with column pivoting 21
3.1.2 QR factorization with deviation maximization pivoting . . 24
3.1.3 Worst-case bound on the smallest singular value 26

vi

3.1.4 Termination criteria . 31
3.1.5 Implementation of QR with deviation maximization algo-

rithm . 32
3.2 Numerical tests . 33
3.3 Concluding remarks . 39

4 Nonnegative least squares 40
4.1 Solving nonnegative least squares problems 42

4.1.1 The Lawson-Hanson algorithm 43
4.1.2 Implementation of Lawson-Hanson algorithm 45
4.1.3 A simple application of deviation maximization 46
4.1.4 The Lawson-Hanson algorithm with deviation maximization 53
4.1.5 Implementation of Lawson-Hanson with deviation maxi-

mization algorithm . 56
4.2 Sparse recovery . 57

4.2.1 Exact recovery . 57
4.2.2 Sparse recovery by nonnegative least squares 59
4.2.3 Sparsity enhancing methods and approximate measure-

ments . 61
4.3 Comparison with existing algorithms 62
4.4 Conclusions and future perspectives 66

II Parallel computing for sparse numerical linear alge-
bra 67

5 Solution of BABD systems 68
5.1 Existing direct solvers for ABD and BABD systems 69

5.1.1 Structured Orthogonal Factorization 70
5.1.2 Data dependency analysis of SOF 74

5.2 Solving BABD systems on GPUs 76
5.2.1 Data dependency analysis 80
5.2.2 Parallel structured orthogonal factorization 81
5.2.3 Solving a sequence of BABD systems 83
5.2.4 Implementation issues . 83

5.3 Numerical experiments . 85
5.3.1 Operation Count . 85
5.3.2 Execution Times . 86

5.4 Conclusions . 89

6 ILU preconditioning for Navier-Stokes equations 90
6.1 Sparse triangular solves on GPUs 92

6.1.1 On level-scheduling techniques 92
6.1.2 An iterative approach . 94

6.2 Preconditioning a sequence of linear systems 95
6.2.1 Comparison with existing parallel ILU algorithms 99

vii

6.3 Nonhomogeneous incompressible Navier-Stokes equations 101
6.4 Hybrid CPU-GPU implementation 103
6.5 Numerical simulations . 106

6.5.1 Test environment . 107
6.5.2 Convergence tests . 107
6.5.3 Dual-fluid flow . 109
6.5.4 Tradeoff between accuracy and efficiency 121

6.6 Summary . 123

A dCATCH numerical software 128
A.1 Introduction . 128
A.2 G-optimal designs . 129
A.3 Computing near G-optimal compressed designs 131
A.4 Numerical examples . 137

A.4.1 Complex shapes d = 3 . 137
A.4.2 Hypercubes: Chebyshev grids 138
A.4.3 Hypercubes: low-discrepancy points 139

A.5 Conclusions and outlook . 142

Bibliography 144

viii

List of Figures

3.1 Ratio di/σi with QP3. 34
3.2 Ratio σi(R11)/σi with QP3. 35
3.3 Performance of QRDM in function of parameters τu and τθ. . . . 35
3.4 Ratio di/σi with QRDM. 36
3.5 Ratio σi(R11)/σi with QRDM. 37
3.6 Relative error on the computed numerical rank for QRDM. . . . 38
3.7 Speedup analysis of QRDM and QRDM with stopping criterion

over QP3. 38

4.1 Performance of LHDM versus the five methods tested on the first
dataset. 63

4.2 Speedup of LHDM over LH for different values of kmax. 65
4.3 Evolution of the cardinality of the passive set during the execu-

tion of LHDM for different values of kmax. 65

5.1 Data dependency DAG for SOF in the case N = 8 (9n unknowns)
with P = 4 slices (and processors) of k = 2 block rows each,
showing the dataflow between each block equation. 76

5.2 Data dependency DAG for odd/even SOF in the case N = 7 (8n
unknowns) with P = 8 slices (and processors) of k = 2 block
rows each, showing the dataflow between each block equation. . 81

5.3 Data dependency DAG for PARASOF in the case N = 8 (9n
unknowns) with P = 4 slices (and processors). 82

5.4 Operation count and theoretical speedup of PARASOF vs SOF. . 87
5.5 Speed-up (factorization and solution) of PARASOF over BABDCR. 88
5.6 Speed-up (only solution) of PARASOF over BABDCR. 88

6.1 Data dependency DAG. 93
6.2 Data dependency DAG with RCM ordering. 94
6.3 Hybrid CPU-GPU program flow chart. 105
6.4 Rates of convergence. 108
6.5 Condition number in function of the Reynolds number at different

density ratios. 110
6.6 Distribution of the eigenvalues with different preconditioners. . . 111
6.7 Sparsity patterns. 112

ix

6.8 Evolution of the density contours 40.0 ≤ ρ ≤ 60.0, density ratio
100, Reynolds number Re = 0.01. 114

6.9 Iteration number and execution times, density ratio 100, Reynolds
number Re = 0.01. 115

6.10 Evolution of the density contours 1.4 ≤ ρ ≤ 1.6, density ratio 3,
Reynolds number Re = 20000. 117

6.11 Iteration number and execution times, 3, Reynolds number Re =
20000. 118

6.12 Evolution of the density contours 8.0 ≤ ρ ≤ 12.0, density ratio
19, Reynolds number Re = 1000. 119

6.13 Iteration number and execution times, density ratio 19, Reynolds
number Re = 1000. 120

6.14 Instability phenomenon, density ratio 19, Reynolds number Re =
1000. 121

6.15 Evolution in time of the minimum singular and maximum sin-
gular values of the factors of the updated ILU preconditioner.
. 122

A.1 Multibubble test case, regression degree m = 10. 138
A.2 Cardinality of the passive set per iteration of the three LH algo-

rithms for Chebyshev nodes’ tests. 140
A.3 Cardinality of the passive set per iteration of the three LH algo-

rithms for Halton points’ tests. 141

x

List of Tables

4.1 Results of LHDM versus the five methods tested on the second
dataset. 64

5.1 Operation count and additional memory requirements for SOF
and PARASOF algorithms. 86

6.1 Performance of different updates of ILU preconditioner, density
ratio 100, Reynolds number Re = 0.01. 116

6.2 Performance of different updates of ILU preconditioner, density
ratio 3, Reynolds number Re = 20000. 119

6.3 Mesh properties. 123
6.4 Performance of the preconditioners on the dual-flow at different

Reynolds number. 126
6.5 Performance of the preconditioners on the analytical solution at

different Reynolds numbers. 127
6.6 Performance of the preconditioners on the analytical solution at

different Atwood numbers. 127

A.1 List of acronyms. 129
A.2 dCATCH package content. 129
A.3 Results for the multibubble numerical test. 138
A.4 Results of numerical tests on M = (2km)d Chebyshev’s nodes,

with k = 4, with different dimensions and degrees. 139
A.5 Results of numerical tests on Halton points. 142

xi

List of Algorithms

1 Deviation Maximization (DM) 15
2 QR with column pivoting (QRP) 23
3 QR with Deviation Maximization (QRDM) 26
4 Lawson-Hanson (LH) . 44
5 Simple Lawson-Hanson with Deviation Maximization 46
6 Lawson-Hanson with Deviation Maximization (LHDM) 54
7 Structured Orthogonal Factorization (SOF) 75
8 Odd/Even Structured Orthogonal Factorization 80
9 PARAllel Structured Orthogonal Factorization (PARASOF) . . 82
10 Iterative Threshold Alternating Lower Upper (ITALU) 96
11 Simplified Iterative Threshold Alternating Lower Upper (SITALU) 97
12 Component-wise SITALU(m) . 100
13 Fine-Grained Parallel Incomplete Factorization 101
15 Matrix blocking . 113
14 Residual matrix computation . 125

xii

Chapter 1

Introduction

1.1 Motivation and goals

We are interested in the efficient solution of the many variations of the linear
system

Ax = b, (1.1)

where A is a matrix of size m×n and x,b are the unknown and the right-hand
side vectors. In the case in which the right-hand side does not belong to the
space spanned by the columns of A, namely b ̸∈ R(A), then equation (1.1)
does not admit a solution and we rather look for a solution that minimizes the
2-norm of the residual, namely we seek the solution of the least squares problem

min
x∈Ω
∥Ax− b∥, (1.2)

where the solution vector is possibly constrained to range in the subset Ω ⊂ Rn.
On the other hand, if the right-hand side does belong to the space spanned
by the columns of A, namely b ∈ R(A) but the matrix A has not full column
rank, then (1.1) has infinitely many solutions and we want to choose the best
solution x for our purpose. These are classic topics in numerical linear algebra
of renewed interest if, like in the present work, we address to large ill-posed
problems, in which the matrix is possibly rank-deficient and the solution may not
be unique, or to emerging hardware technologies like many-cores architectures
such as Graphic Processing Units (GPUs).

The goal of this work is to cope with these challenging problems devising ro-
bust dense and sparse linear algebra solvers that can achieve better efficiency on
modern processing architectures by means of lower communications and mem-
ory consumption, that show a good scalability, namely the capacity of handle
a growing amount of work, and that can guarantee a high achieved occupancy
on parallel architectures, that is the fraction of active computing units (cores)
over the upper limit. Implementation of efficient and scalable numerical meth-
ods suitable for high performance computers is an interdisciplinary task which

1

requires an extended knowledge of applied mathematics and computer science.
Mathematical models, numerical methods and software implementations need
new conceptual and programming paradigms to make effective use of unprece-
dented levels of concurrency provided by modern many-core processors and the
ever increasing complexity of hardware architectures. Moreover, it is important
to stress that the effort for high quality product code is way larger than the
effort for prototype code.

1.2 Thesis outline and contributions

Methods for solving equations (1.1) and (1.2) can be roughly grouped into two
families: direct and iterative methods. Direct methods proceed by computing a
factorization of the system matrix A such as the LU, SVD or QR factorizations;
the solution of the original problem is then obtained as the solution of one or
more linear systems involving the resulting factor matrices, which are easy and
cheap to solve, e.g. triangular linear systems. Instead, iterative methods start
from an initial guess solution and improve it step by step until a desired solution
accuracy is achieved or when a maximum number of iterations is reached without
converging to a satisfactory solution. The choice of the solution method and
the consequent algorithm to employ must take into account the structural and
numerical properties of the matrix A. For what concerns structural properties,
the first distinction can be established between dense and sparse matrices. The
terms dense and sparse refer to the data structure used to store a matrix. The
matrix A ∈ Rm×n is dense if it is stored as a full array of m rows and n columns
with mn entries. A popular definition of a sparse matrix is attributed to James
Wilkinson: “A sparse matrix is any matrix with enough zeros that it pays to
take advantage of them”. Nowadays, a matrix is considered to be sparse if it
contains a number O(max {m,n}) of nonzero entries.

The first part of this thesis addresses high-performance algorithms for dense
linear algebra. Efficient numerical linear algebra code is build on top of Basic
Linear Algebra Subprograms (BLAS), which are grouped in three levels:

• BLAS-1: vector-vector operations;

• BLAS-2: matrix-vector operations;

• BLAS-3: matrix-matrix operations.

In the context of high-performance coding, the classical operation count alone
may not be a good indicator of the efficiency of an algorithm. In order to close
this gap, it is fundamental to design algorithms according to modern computer
architectures while ensuring robustness. Block algorithms have become increas-
ingly popular in matrix computations, see e.g. [118]. Since their basic unit of
data is a submatrix rather than a scalar they have a higher level of granularity
than point algorithms, which allows to write algorithms in terms of BLAS-
3 operations instead of BLAS-1 or BLAS-2, and this makes them well-suited
to high-performance computers by increasing data locality (i.e. cache reuse).

2

When the matrix A has not full column rank, a solution of (1.1) or (1.2) can
be obtained by selecting a minimal subset of columns which spans the same
subspace spanned by the matrix A. From the machine learning and statistics
viewpoint, this problem is known as subset selection or feature selection and
is the process of selecting a subset of relevant features avoiding redundancy in
the model. From the linear algebra viewpoint, this problem amounts to find a
suitable column pivoting which separates the minimal column subset from the
linearly dependent columns. Column pivoting makes it more difficult to achieve
high performances in matrix factorization, see [17, 18, 19, 119, 20], mainly be-
cause it involves memory communications and most implementations are based
on greedy approaches that select a column at a time relying on BLAS-2 op-
erations. To overcome this issue, in Chapter 2 we propose a column selection
technique we call deviation maximization. Our method relies on a correlation
analysis, here intended as cosine of the angle between two vectors to stress the
linear algebra viewpoint, in order to select a subset of sufficiently linearly in-
dependent vectors. Despite this strategy is not sufficient by itself to identify
a minimal subset of linearly independent columns for a given numerically rank
deficient matrix, it can be adopted as a block pivoting strategy in more complex
applications.
In Chapter 3, we deal with rank-deficient least squares problems (1.2), where
Ω = Rn. Here, the SVD decomposition is the safest and most expensive solu-
tion method, while approaches based on a modified QR factorization, such as
the so-called rank-revealing QR, can be seen as cheaper alternatives. Since the
QR factorization is essentially unique once the column ordering is fixed, these
techniques all consist in finding an appropriate column permutation. In this
chapter, based on [60], we propose a new block algorithm based on deviation
maximization pivoting for computing a rank-revealing QR decomposition. We
test the proposed strategy against the state-of-the-art algorithm in terms of ex-
ecution times and quality of the decomposition found on a large set of instances
of medium size, with up to thousands of rows and columns.
In Chapter 4, we cope with least squares problems (1.2) with nonnegativity con-
traints, where Ω = {x ∈ Rn : x ≥ 0}. Nonnegative least squares problems arise
in many applications where data points can be represented as nonnegative lin-
ear combinations of some meaningful components. Such problems are frequently
encountered in signal and image processing and they are core problems in more
complex computations, such as nonnegative matrix and tensor decompositions.
This problem can also be seen as a column selection problem: in fact, once the
set P = {i : x⋆

i > 0} is known, where x⋆ = (x⋆
i) is a solution vector of (1.2), then

x⋆ can be obtained by solving an unconstrained least squares problem where
the objective matrix is the submatrix of A obtained by selecting the columns
indexed in P . Therefore, we propose a new block algorithm based on deviation
maximization pivoting for solving nonnegative least squares problems based on
[64]. In particular, we address the case in which the matrix A is underdeter-
mined, i.e. it has more columns than rows (n > m). In this case the nullspace
of A is nontrivial, thus we have infinitely many solutions. The nonnegativity
contraint is known to naturally enhance sparsity of the solution, that is the

3

solution attained has few nonzeros, see e.g. [31, 76, 143, 144]. An important
outcome of this body of work is that nonnegativity alone may attain a satisfac-
tory sparse solution. This problem is known as sparse recovery and it has drawn
much attention within the research community in the last two decades, leading
to the new field of compressed sensing, with application through engineering and
medicine. As a relevant application, in Appendix A we present dCATCH [62],
a numerical package for the computation of compressed multivariate near G-
optimal finite probability measures for polynomial regression design of general
degree based on the celebrated Tchakaloff theorem, a cornerstone of quadrature
theory. This problem can be formulated as a nonnegative least squares problem
where the matrix underdetermined and large, here up to thousands of rows and
millions of columns, which can be efficiently solved, as it was already pointed
out in [61].

The second part of this thesis is devoted to massively-parallel algorithms for
sparse linear algebra. There are three main reasons to explicitly take advantage
of the fact that a matrix is mostly filled up with zeros. First of all, the memory
actually needed to store a sparse matrix is less than the memory needed for the
same matrix as a dense matrix of the same size because the zeros need not be
stored explicitly. Second, the complexity of most operations on a sparse matrix
can be greatly reduced with respect to the same operation on a dense matrix of
the same size because algorithms can be rewritten in order to avoid computa-
tions involving zero coefficients of the original matrix. Finally, parallelism can
be much higher than in the dense case because some operations may involve
distinct subsets of the matrix nonzero entries and can thus be applied concur-
rently. In this work we mainly address General Purpose computing on GPUs
(GPGPU), which is nowadays a cost effective solution for computational inten-
sive simulations. The inherent massively parallel architecture of GPUs demands
for completely different algorithms from that used in a mainly sequential, CPU
based, computing architecture. Direct methods for sparse linear systems are
widely appreciated for their numerical robustness and reliability, as they are ca-
pable of computing accurate solutions for a very wide range of problems without
the need for the user to have any knowledge of linear systems solvers. Another
case where direct methods are often employed is where the same matrix has to
be solved with multiple right-hand sides because the matrix factorization, which
is the most expensive operation, only has to be computed once and its result
reused for multiple, cheap, solve operation. However, they are also characterized
by their high computational complexity: in fact, even if the matrix A is sparse,
its factors in classic matrix decompositions are usually dense matrices. Ideally,
we would like the factors to have the same sparsity pattern as A, namely the
set S(A) = {(i, j) : aij ̸= 0}, or at least close enough. However, in the course
of calculating the factorization, other nonzero entries may be introduced in the
factors and those are referred to as the fill-in. In order to limit computational
cost and memory usage, direct solvers need to be carefully designed. Moreover,
the solution of sparse linear systems often decomposes in subproblems of differ-
ent size, leading to irregular and unbalanced computations for which efficient
solvers are complex to design. This is the reason why direct methods are gener-

4

ally considered to be more difficult to efficiently implement on massively parallel
architectures. Efficient implementations require the exploitation of all types of
parallelism in the programs and the reduction of communication to almost noth-
ing. The real challenge is left to the programmers, as the application has to be
broken down into smaller parallel tasks, and also each task has to be assigned to
the suitable hardware device. To this aim, parallel programming models based
on Directed Acyclic Graph (DAG) parallelism recently regained popularity in
the high-performance, scientific computing community. This technique consists
in writing the numerical algorithm at a high level independently of the hardware
architecture as a DAG of tasks where a vertex represents a task and an edge rep-
resents a dependency between tasks. From the parallel programming viewpoint,
such a DAG highlights data dependencies in computations and it is therefore
fundamental for performance analysis before investing in a real implementation.
In the sparse linear algebra community, only few research efforts have been con-
ducted in this sense. Iterative methods for sparse linear systems are generally
considered well suited to be implemented on parallel architectures, as they are
based upon easy operations such as matrix-vector product. The convergence
of an iterative method essentially depends on the numerical properties of the
matrix A. More precisely, the eigenvalues of a normal matrix provide all of the
essential information about that matrix, as far as iterative linear system solvers
are concerned. Under suitable hypotheses, other tools can be used such as field
of values or pseudospectra when dealing with nonnormal matrices. Indeed, in
some cases the solution of a linear system may require a very high number of
iterations or convergence may not be reached at all. For this reason iterative
solvers are often used in combination with preconditioning techniques. A pre-
conditioner can be seen as a matrix M such that M−1 ≈ A−1, i.e. its inverse
approximates that of A. This is used to transform the linear system (1.1) into
the modified linear system M−1Ax = M−1b. At each step of the precondi-
tioned algorithm, it is necessary to compute the product of M−1 with a vector
or to solve a linear system with matrix M . Notice that these operations are
equivalent in exact arithmetic, but the computational effort required depends
on the structure of M or on how M−1 is computed. A good preconditioner M
should be chosen so that such linear systems are much easier to solve than the
original problem and so that the modified problem shows a faster convergence.
Many research efforts have been dedicated to the subject of preconditioning in
last decades, most of them have dealt with the design of preconditioners for
specific classes of problems.

Sparse systems do not only come from numerical methods for PDEs: Chap-
ter 5, which is based on [59], focuses on a family of sparse matrices with block
structure, called Bordered Almost Block Diagonal (BABD) matrices, arising e.g.
in optimal control problems. General purpose direct solvers are undesirable for
many reason, not last the introduction of fill-in in the solution procedure, lead-
ing to significant inefficiencies. We propose a new direct solver tailored for
parallel many-cores architectures, proving its performance analysis in terms of
data dependency DAG, which ensures a better work per step balance and re-
markable memory savings. Here we address large matrices with up to millions

5

of rows and columns. Last, Chapter 6 is based on [58] and it deals with the
parallel iterative solution of the Navier-Stokes equations, where often O(105)
coupled nonlinear equations must be solved at each discretization time instant,
to capture the relevant underlying physics of the fluid motion. Here we focus on
Incomplete LU (ILU) preconditioner, one of the most popular general purpose
preconditioners. The ILU precondidioner relies on the solution of two triangu-
lar systems at each application. Solving a triangular system is an inherently
sequential computation activity: in fact, these systems are typically solved by
forward and backward substitution. Here, we focus on obtaining from an ILU
preconditioner the best performance on a GPU architecture. For this reason,
we mainly investigate the parallelization of the triangular systems solver needed
at each iteration within the preconditioned GMRES method. This is the com-
putationally intensive operation that requires the most of the time spent by the
simulation.

This research work has been accomplished within the PhD fellowship “GPU
computing for modelling, nonlinear optimization and machine learning” funded
by beanTech Srl. Given the extent and the complexity of the themes here
discussed, this thesis is far from being self-contained. For a general background
on the topic see e.g. [81]. The linear algebra algorithms presented within this
thesis have been implemented in C or C/CUDA compiled languages, while high
level layers of the software have been written in Python or Matlab interpreted
languages. The codes here used are freely available online [57].

1.3 Notation

In what follows we denote matrices by capital letters, A ∈ Rm×n, where Rm×n

denotes the space of m× n real valued matrices. Vectors are indicated in bold,
x ∈ Rn, while scalars are denoted by lower case letters, a ∈ R. We access the
elements of a matrix A in many ways, therefore we introduce different matrix
partitions. Let us write the matrix A as a stack of n column vectors of length
m, namely

A = (a1 . . .an).

This is called a column partition of A. Similarly, the matrix A can be written
as a stack of m row vectors of length n. This is called a row partition, that is

A =

⎛⎜⎝ rT1
...
rTm

⎞⎟⎠ .

For any matrix A of sizem×n, we denote by A(I, J) the submatrix of A obtained
considering the entries with row indices ranging in the set I and column indices
ranging in the set J . We make use of the so called “colon notation”, that is
we denote by A(k : l, p : q) the submatrix of A obtained considering the entries
with row indices k ≤ i ≤ l and column indices p ≤ j ≤ q. We denote by
A(:, p : q) (A(k : l, :)) the submatrix of A obtained considering the entries with

6

column (row) indices p ≤ j ≤ q (k ≤ i ≤ l) and row (column) indices 1 ≤ i ≤ m
(1 ≤ j ≤ n). We use the shorthand AJ to indicate the submatrix A(1 : m,J),
with column indices ranging in J ⊆ {1, . . . , n} and row indices 1 ≤ i ≤ m. We
also denote the (i, j)-th entry as aij or Aij (A(i, j)). Last, we denote In the
identity matrix of order n, omitting the subscript when the size is clear from
the context, and by 0 the null matrix, which may even be rectangular.

For any matrix A ∈ Rm×n, we write AT to indicate the transpose matrix of
size n×m, namely if A = (aij) then AT = (aji), for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If
A is square and nonsingular, we write A−1 to indicate the inverse of A, otherwise
we use the symbol A† to denote the Moore–Penrose inverse of A. We denote
by R(A) ⊆ Rm the range of A, i.e. the subspace spanned by the columns of A,
and by N (A) ⊆ Rn the nullspace of A, namely the subspace of those vectors
x for which we have Ax = 0. For any subspace S of Rn, we denote by PS the
orthogonal projection on S.

The singular values of a matrix A are denoted as

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(A) = σmin(m,n)(A) ≥ 0.

Given the vector norm ∥x∥p = (|x1|p+ . . . |xn|p)1/p, p ≥ 1, we denote the family
of p-norms as

∥A∥p = sup
∥x∥p=1

∥Ax∥p.

We denote the operator norm by ∥A∥2 = σmax(A). When the context allows it,
we drop the subscript on the 2-norm. With a little abuse of notation, we define
the max-norm of A as ∥A∥max = maxi,j |aij |. Recall that the max-norm is not
a matrix norm (it is not submultiplicative), and it should not be confused with
the ∞-norm ∥A∥∞ = maxi

∑︁
j |aij |.

Equalities and inequalities between vectors and scalars are meant element-
wise, that is Ax = b stands for

∑︁
j aijxj = b, for every i.

7

Part I

High-performance
algorithms for dense

numerical linear algebra

8

Chapter 2

Deviation maximization for
column selection

2.1 Preliminary results

For sake of completeness, let us list in what follows some easy but useful facts
we often use in this work. In order to help the reader, some results are stated
together with their proof, others are simply reported and referenced.

2.1.1 About Singular Values

Let A be an m×n matrix, and recall that the singular values of A are the roots
of the largest min(m,n) eigenvalues of ATA or AAT . This is quite evident using
the SVD decomposition A = UΣV T , where U and V are unitary matrices of
order m and n respectively, and Σ is an m×n pseudo-diagonal matrix (its extra-
diagonal elements are null). Since ATA = V ΣTΣV T and AAT = UΣΣTUT ,
where ΣTΣ and ΣΣT are diagonal matrices of order n and m respectively, but
they clearly share the same diagonal elements up to index min(m,n). For any
orthogonal matrix Q of order m, we have

ATA = ATQTQA = (QA)TQA, (2.1)

therefore A and QA have the same singular values. On the other hand, if Q is
an orthogonal matrix of order n, we have

AAT = AQQTA = AQ(AQ)T . (2.2)

This holds in particular for any permutation matrix Π, hence column or row
permutations do not change the singular values of a matrix. We also have

(︁
AT 0T

)︁(︃ A
0

)︃
=
(︁
0T AT

)︁(︃ 0
A

)︃
= ATA+ 0T 0 = ATA, (2.3)

9

hence the singular values of a matrix do not change if we add a null block of
rows or columns to a matrix A.

Let us now list and prove some inequalities involving the 2-norm of a matrix
A = (a1 . . .an).

Lemma 1. For any matrix A we have

max
i
∥ai∥2 ≤ ∥A∥2 ≤

√
nmax

i
∥ai∥2. (2.4)

Proof. Let ei be the i-th element of the canonical basis of Rn. Then Aei = ai,
and the left-hand inequality is proved. For the right-hand inequality, consider
x ∈ Rn, then

Ax =
∑︂

xiai ⇒ ∥Ax∥2 ≤
∑︂
|xi|∥ai∥2.

Apply Cauchy-Schwarz inequality and take x such that ∥x∥ = 1 to conclude

∥Ax∥2 ≤ ∥x∥2
√︄∑︂

i

∥ai∥22 ≤
√
nmax

i
∥ai∥2.

The following inequalities are easy consequences of the result above.

Corollary 1. For any matrix A we have

∥A∥max ≤ ∥A∥2 ≤
√
mn∥A∥max. (2.5)

Proof. Let ai be the i-th column of A. Then we have

∥ai∥ =
√︂
a2i1 + · · ·+ a2im ≤

√
mmax

j

√︂
a2ij =

√
mmax

j
|aij |,

and, for any 1 ≤ j ≤ m, we have

∥ai∥ ≥
√︂

a2ij = |aij |.

Apply these inequalities to (2.4) to conclude.

Corollary 2. If A is a nonsingular and its inverse is partitioned into rows as

A−1 =

⎛⎜⎝ bT
1
...
bT
n

⎞⎟⎠ ,

then

σmin(A) ≤ min
i
(∥bi∥−1

2) ≤
√
nσmin(A). (2.6)

10

Proof. The Lemma above applied to A−T yields

max
i
∥bi∥2 ≤ ∥A−T ∥2 ≤

√
nmax

i
∥bi∥2, (2.7)

from which we deduce the left-hand inequality

min
i
(∥bi∥−1

2) ≥ 1

∥A−T ∥2
=

1

∥A−1∥2
= σmin(A). (2.8)

For the right-hand inequality, consider x ∈ Rn, then

∥A−1x∥22 =

⃦⃦⃦⃦
⃦⃦⃦ bT

1 x
...

bT
nx

⃦⃦⃦⃦
⃦⃦⃦
2

2

=
∑︂
i

(︁
bT
i x
)︁2 ≤∑︂

i

∥bi∥22 ∥x∥
2
2 ,

where we used Cauchy-Schwarz inequality. We have

∥A−1∥22 = max
∥x∥2=1

∥A−1x∥22 ≤ max
∥x∥2=1

∑︂
i

∥bi∥22 ∥x∥
2
2 =

∑︂
i

∥bi∥22 ≤ nmax
i
∥bi∥22 ,

from which we deduce

min
i
(∥bi∥−1

2) ≥
√
n

∥A−1∥2
=
√
nσmin(A).

2.1.2 About Strictly Diagonally Dominant matrices

A matrix A is said to be strictly diagonally dominant by rows if

|aii| >
∑︂
j ̸=i

|aij |,

for all i. We say A is strictly diagonally dominant by columns if AT is strictly
diagonally dominant by rows. The gap of diagonal dominance of a strictly
diagonally dominant matrix A is the positive number γ defined as

γ = min
i

⎛⎝1−
∑︂
j ̸=i

|aij |

⎞⎠ .

The following result is taken from [120], and we prove it here for sake of
completeness.

Lemma 2. Let M = I−S, with ∥S∥∞ < 1
2 . Then M−1 exists, it has a positive

diagonal and it is strictly diagonally dominant.

11

Proof. In this case Neumann series converges, and we have

M = M−1 =

∞∑︂
k=0

(I −M)k =

∞∑︂
k=0

Sk = I +

∞∑︂
k=1

Sk, (2.9)

hence

max
i

∑︂
j

|M |ij =
⃦⃦
M
⃦⃦
∞ =

⃦⃦⃦⃦
⃦I +

∞∑︂
k=1

Sk

⃦⃦⃦⃦
⃦
∞

≤ 1 +

⃦⃦⃦⃦
⃦

∞∑︂
k=1

Sk

⃦⃦⃦⃦
⃦
∞

< 2,

since
⃦⃦∑︁∞

k=1 S
k
⃦⃦
∞ ≤

∑︁∞
k=1

⃦⃦
Sk
⃦⃦
∞ ≤

∑︁∞
k=1 ∥S∥

k
∞ <

∑︁∞
k=1

1
2

k
= 1. Moreover,

we also have that

1 >

⃦⃦⃦⃦
⃦

∞∑︂
k=1

Sk

⃦⃦⃦⃦
⃦
∞

= max
i

∑︂
j

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓ ≥∑︂

j

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓ ≥

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓ ,

for all choices of i, j. Considering eq. (2.9) entrywise, we get

M ij =

(︄ ∞∑︂
k=0

Sk

)︄
ij

= Iij +

∞∑︂
k=1

Sk
ij ,

implying that M ii > 0. Moreover, we have

M ii −
∑︂
j ̸=i

⃓⃓
M ij

⃓⃓
= 1 +

∞∑︂
k=1

Sk
ii −

∑︂
j ̸=i

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓

>
∑︂
j

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓+

∞∑︂
k=1

Sk
ii −

∑︂
j ̸=i

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓

=
∑︂
j ̸=i

(︄⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓−
⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ij

⃓⃓⃓⃓
⃓
)︄

+

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ii

⃓⃓⃓⃓
⃓+

∞∑︂
k=1

Sk
ii

=

⃓⃓⃓⃓
⃓
∞∑︂
k=1

Sk
ii

⃓⃓⃓⃓
⃓+

∞∑︂
k=1

Sk
ii ≥ 0,

therefore M is a strictly diagonally dominant matrix with a positive diagonal.

Corollary 3. Let A = α(I − S), with α > 0 and ∥S∥∞ < 1
2 . Then A−1 exists,

it has a positive diagonal and it is strictly diagonally dominant.

Proof. Apply Lemma 2 to I −S, then (I −S)−1 is strictly diagonally dominant
with a positive diagonal, and so is α−1(I − S)−1 = A−1.

Let us state some results, for the proof see [142]. Let A be strictly diagonally
dominant by rows, and set α = mini |aii| −

∑︁
j ̸=i |aij | > 0. Then

∥A−1∥ < 1

α
⇒ ∥A−1∥−1 = σmin(A) > α. (2.10)

12

If A is strictly diagonally dominant both by rows and columns, and β =
minj |ajj | −

∑︁
i ̸=j |aij | > 0, then

∥A−1∥−1 = σmin(A) ≥
√︁

αβ.

Lemma 3. Let A be an n × n strictly diagonally dominant matrix, with γ =
mini 1 −

∑︁
j ̸=i |aij/aii| > 0. Let D = diag(d1, . . . , dn), and let 1 ≥ τ > 0 such

that |di| ≥ τd > 0, where d = maxi |di| > 0, for all i. The matrix DAD is
strictly diagonally dominant if γ > 1− τ .

Proof. We have (DAD)ij = didjaij . For all 1 ≤ i ≤ k, we have∑︂
j ̸=i

|didjaij | = |di|
∑︂
j ̸=i

|djaij | ≤ |di|d
∑︂
j ̸=i

|aij |

and hence

d2i |aii| −
∑︂
j ̸=i

|didjaij | ≥ |di|d

⎛⎝τ |aii| −
∑︂
j ̸=i

|aij |

⎞⎠ .

Since |di| ≥ τd > 0 for all i, the quantity at the right-hand side of the above
inequality is positive if and only if

τ −max
i

∑︂
j ̸=i

|aij |
|aii|

> 0,

or, in our notation, γ > 1− τ .

2.2 The deviation maximization algorithm

Consider an m×n matrix A which has not full column rank, that is rank(A) =
r < n, and consider the problem of finding a subset of well conditioned columns
of A. Before presenting a strategy to solve this problem, let us first introduce
the notion of cosine matrix associated to a given matrix.

Definition 1. Let C = (c1 . . . ck) be an m × k matrix whose columns ci
are non-null. Let D be the diagonal matrix with entries Dii = ∥ci∥ , 1 ≤
i ≤ k. Then the cosine matrix associated to C is defined as Θ = Θ(C) =(︁
CD−1

)︁T
CD−1 = D−1CTCD−1, and its entries are

θij =
cTi cj
∥ci∥∥cj∥

= cos(αij), 1 ≤ i, j ≤ k. (2.11)

where αij = α(ci, cj) is the acute angle between ci and cj.

In statistics, the just introduced notion of cosine matrix is better known as
correlation matrix. It is immediate to see that the cosine matrix Θ is symmetric

13

positive semidefinite, it has only ones on the diagonal, and its entries range from
−1 to 1. Here, in order to stress the linear algebra viewpoint, we call it cosine
matrix.
The main idea of deviation maximization is to use the cosines to select a block
of vectors whose pairwise deviations are large, i.e. two selected columns do
not (nearly) belong to the same one dimensional subspace. Before formally
presenting the procedure, let us state the following result.

Lemma 4. Let C = (c1 . . . ck) be an m×k matrix whose columns are nonzero.
Suppose that ∥c1∥ = maxj ∥cj∥ and that there exists 1 ≥ τ > 0 such that
∥cj∥ ≥ τ∥c1∥, for all 1 ≤ j ≤ k. Let Θ be the cosine matrix associated to C
and suppose that Θ is a strictly diagonally dominant matrix with

γ = min
i

⎧⎨⎩1−
∑︂
j ̸=i

|θij |

⎫⎬⎭ > 1− τ > 0.

Then
σmin(C) ≥

√︁
τ(γ + τ − 1) ∥c1∥.

Proof. Let us first show that if Θ is a strictly diagonally dominant matrix.
Then the symmetric positive definite matrix CTC = DΘD, D = diag(∥ci∥) is
strictly diagonally dominant. This follows from Lemma 3, since |θii| = 1 for all
1 ≤ i ≤ k, and we have γ > 1− τ by assumption.

Applying the bound (2.10), we have

σmin(C
TC) ≥ τ(γ + τ − 1)∥c1∥2 ⇒ σmin(C) ≥

√︁
τ(γ + τ − 1)∥c1∥.

The result above shows quite clearly that the bound on the smallest singular
value of C depends on the norms of the column vectors and on the angles
between each pair of such columns.

Recall that we would like to select k linearly independent and well-conditioned
columns of A. The result above suggests to choose columns with indices J =
{j1, . . . , jk} ⊆ {1, . . . , n}, with k ≤ r, with a large euclidean norm, i.e. larger
than a length defined by τ , and with large pairwise angles, meaning that the
absolute values of their cosines are small enough. The set J can be chosen in a
way such that the corresponding submatrix C = AJ satisfies the hypotheses of
Lemma 4.

Let us now present the deviation maximization method, which addresses
this column selection task. Here, the information available on each column is
encoded in two vectors v1,v2 of length n, one of which typically contains the
column norm and the other some additional information, e.g. descend direction
for optimization problems. Let us fix three parameters τ1, τ2, τθ, whose values
range from 0 to 1. The deviation maximization incrementally builds the set
J by computing a sequence of index subsets J (0) ⊆ J (1) ⊆ · · · ⊆ J . The set
J (0) is initialized with an index corresponding to the maximum element of v1,

14

namely J (0) = {j1}, where j1 ∈ argmaxv1. The set J is obtained by adding
some indices within the candidate set I, defined as

I = {i : (v1)i ≥ τ1 maxv1, i ̸= j1} .

namely the set of column indices i such that the corresponding value (v1)i
is larger than a given parameter τ1 times the maximum value in v1. If the
cardinality of I exceeds a value kmax, then I is eventually restricted in order to
limit memory usage and computational cost, mainly due to the creation of the
cosine matrix ΘI := Θ(CI) = (θij), where CI denotes the submatrix of C with
column indices in I.
Let I = {i1, . . . , ikmax

}. At the l-th iteration, the index il ∈ I is inserted in
J (l−1) to give J (l) only if the il-th column has a large value (v2)il with respect
to the parameter τ2, that is

∥cil∥ ≥ τ2 max
i∈I
∥ci∥ ,

and if the corresponding cosines of the angles between the column il with the
columns in J (l−1) are small with respect to the parameter τθ, that is

|θil,j | < τθ, for all j ∈ J (l−1).

The resulting procedure of column selection is summarized in Algorithm 1. At

Algorithm 1 Deviation Maximization (DM)

Inputs: C,v1,v2, τ1, τ2, τθ, kmax

Output: J
1: J (0) = {j1 : j1 ∈ argmaxv1}
2: I = {i : (v1)i ≥ τ1 maxv1, i ̸= j}
3: if |I| > kmax then
4: I = {il ∈ I : l = 1, . . . , kmax}
5: end if
6: compute the cosine matrix Θ associated to CI

7: for l = 1, . . . , kmax do
8: if (v2)il > τ2 maxv2 and |θil,j | < τθ,∀j ∈ J (l−1) then
9: J (l) = J (l−1) ∪ {il}

10: else
11: J (l) = J (l−1)

12: end if
13: end for
14: J = J (kmax)

the end of the iterations, we have J = J (kmax) = {j1, . . . , jk}, with 1 ≤ k ≤ kmax.
Notice that the following choice of the parameter τθ, namely

τθ ≤
1− γ

kmax − 1
, (2.12)

15

allows to identify ΘJ := Θ(CJ), i.e. a square submatrix of ΘI , whose gap of
diagonal dominance is larger than a value γ. Indeed for every j ∈ J we have∑︂

i∈J
i ̸=j

|θij | < (kmax − 1)
1− γ

kmax − 1
= 1− γ,

and hence

min
j∈J

⎧⎪⎨⎪⎩1−
∑︂
i∈J
i̸=j

|θij |

⎫⎪⎬⎪⎭ > γ. (2.13)

At the end of the deviation maximization, we clearly have

(v1)j ≥ τ1 maxv1(J),

(v2)j ≥ τ2 maxv2(J),

for every j ∈ J . When v2 (or v1) is the column norms vector, in order to make
CJ satisfy Lemma 4 it is sufficient to set

τ2 > 1− γ (or τ1 > 1− γ) , (2.14)

for a given 1 ≥ γ > 0. Notice that when γ is not available, the following choice
of τθ also ensures that CJ satisfies Lemma 4, that is

τθ <
τ2

kmax − 1

(︃
or τθ <

τ1
kmax − 1

)︃
.

Let us briefly comment the choice of the parameters τ1, τ2 and τθ. The value of
parameter τ1 should be small in order to get a large candidate set I. Similarly,
a small value of parameter τ2 likely yields a larger k = |J |. For what concerns
τθ, when its value is equal (or close) to zero only pairwise (nearly) orthogo-
nal columns are accepted to be inserted in the set J . However, this is a rare
occurrence in real world problems, and therefore a large value of τθ is desirable.

The procedure here presented exploits diagonal dominance in order to ensure
linear independence. In practice, this often turns out to be a too strong condition
to be satisfied, and as a result the number k of columns found is usually way
smaller than the matrix rank r. Indeed, diagonal dominance of the cosine matrix
is a sufficient but obviously not a necessary condition for linear independence
of a set of column vectors, and this suggests that it is not necessary to choose
τθ accordingly to (2.12).

Deviation maximization may be adopted to perform block column pivoting
in various algorithms that deal with column selection. In practice, the values of
parameters τ1, τ2 and τθ can be tied to the properties of the specific algorithm
that uses the deviation maximization as pivoting. In what follows, we success-
fully apply the deviation maximization pivoting to derive a rank-revealing QR
decomposition and to the solution of nonnegative least squares problems.

16

2.3 Implementation of deviation maximization
algorithm

In this section we discuss implementation aspects of deviation maximization. In
particular, we address the following issues

1. the practical computation of the candidate set I defined in (2.2);

2. the efficient computation of the cosine matrix Θ defined in (2.11);

3. the structure of the pivoting, which has a significant impact on the cost
of the overall algorithm.

Let us first focus on some details of the implementation of the deviation maxi-
mization presented in Algorithm 1.

The candidate set I can be computed with a fast sorting algorithm, e.g.
quicksort, applied to the array of partial column norms.

The most expensive operation in Algorithm 1 is the computation of the
cosine matrix in step 6. If we write the matrix C by columns C = (c1 . . . cn),
then the cosine matrix restricted to the candidate set ΘI has entries θij =
cTi cj∥ci∥−1∥cj∥−1, for i, j ∈ I. Therefore we have

ΘI = D−1CT
I CID

−1, (2.15)

where D = diag(di) is a diagonal matrix, with di = ∥ci∥, i ∈ I. The matrix ΘI

is symmetric, thus we only need its upper (lower) triangular part. This can be
computed in two ways

(i) we first form the product U1 = CID
−1, and then we compute ΘI = UT

1 U1;

(ii) we first form the product U2 = CT
I CI , and then we compute ΘI =

D−1U2D
−1.

The former approach requires m × n additional memory to store U1 and it
requires m2k2max flops to compute U1 and (2m − 1)kmax(kmax − 1)/2 flops for
the upper triangular part of UT

1 U1, while the latter does not require additional
memory since the matrix U2 can be stored in the same memory space used for
the cosine matrix Θ, and it requires (2m− 1)kmax(kmax − 1)/2 flops the upper
triangular part of U2 and kmax(kmax − 1) flops for the upper triangular part of
D−1U2D

−1. Therefore, we recommend the second approach, even if it requires
to write an ad hoc low level routine which is not implemented in the BLAS
library.

In order to limit the cost and the amount of additional memory of Algo-
rithm 1, we propose a restricted version of deviation maximization pivoting. If
the candidate is given by I = {il : l = 1, . . . , |I|}, then we limit its cardinality
to be smaller or equal to a machine dependent parameter kmax, that is

I = {il : l = 1, . . . ,min(kmax, |I|)}. (2.16)

17

We refer to the value kmax as block size.
Notice that the deviation maximization is aimed at identify a subset of nu-

merically linearly independent columns. When some ∥ci∥ is close to the working
precision ϵ, we can consider ci as a null vector. Hence, we require

max
i
∥ci∥ > O(ϵ), (2.17)

in order to carry out the deviation maximization procedure.
Last, we discuss the structure of the permutations employed in order to carry

out deviation maximization pivoting, which has a significant impact on the cost
of the algorithm. In fact, when the deviation maximization is used as pivoting
strategy in order to exploit BLAS-3 level operations we need to physically move
in memory the selected columns identified by J = {j1, . . . , jk} to the left leading
positions of C. Mathematically, we apply a permutation matrix Π from the
right to compute CΠ. The structure of the column exchanges determines the
structure of Π and hence the cost of the communications in order to move
selected columns in memory. We prefer permutations consisting of a sequence
of cyclic shifts, that is a cyclic permutation involving only two elements and
fixing all the others. In this way, the application of Π requires only m additional
memory slots, that is the memory needed to swap two columns. Obviously, the
fewer columns to swap the less the work involved in memory communications.
A strategy that can easily be implemented consists in swapping the i-th column
with the ji-th column, for i = 1, . . . , k.

18

Chapter 3

Rank-revealing QR
factorization

Rank-revealing QR (RRQR) factorization was introduced by Golub [80] and it
is nowadays a classic topic in numerical linear algebra; for example, Golub and
Van Loan [81] introduce RRQR factorization for least squares problems where
the matrix has not full column rank: in such a case, a plain QR computation
may lead to an R factor in which the number of nonzeros on the diagonal does
not equal the rank and the matrix Q does not reveal the range nor the null
space of the original matrix. Here, the SVD decomposition is the safest and
most expensive solution method, while approaches based on a modified QR
factorization can be seen as cheaper alternatives. Since the QR factorization is
essentially unique once the column ordering is fixed, these techniques all amount
to finding an appropriate column permutation. The first algorithm was proposed
in [33] and it is referred as QR factorization with column pivoting (QRP). It
should be noticed that, if the matrix of the least squares problem has not full
column rank, then there is an infinite number of solutions. We must resort
to rank revealing techniques which identify a particular solution as “special”.
QR with column pivoting identify a particular basic solution (with at most r
nonzero entries, where r is the rank), while biorthogonalization methods [81],
identify the minimum ℓ2 solution. Rank-revealing decompositions can be used
in a number of other applications [90].

The QR factorization with column pivoting works pretty well in practice,
even if there are some examples in which it fails, see e.g. the Kahan matrix [96].
However, further improvements are possible, see e.g. Chan [42] and Foster [75]:
the idea here is to identify and remove small singular values one by one. Gu and
Eisenstat [83] introduced the Strong RRQR factorization, a stable algorithm for
computing a RRQR factorization with a good approximation of the null space,
which is not guaranteed by QR factorization with column pivoting. Both can be
used as optional improvements to the QR factorization with column pivoting.
Rank revealing QR factorizations were also treated in [82, 43, 93].

19

Column pivoting makes it more difficult to achieve high performances in
QR computation, see [17, 18, 19, 119, 20]. The state-of-the-art algorithm for
computing RRQR, named QP3, is a block version [119] of the standard column
pivoting and it is currently implemented in LAPACK [6]. Other recent high-
performance approaches are tournament pivoting [55] and randomized pivoting
[71, 147, 107]. In this chapter we apply the deviation maximization column
selection technique to the problem of computing a RRQR factorization, deriving
an alternative block algorithm to QP3 we call QRDM.

The rest of this chapter is organized as follows. In Section 3.1 we define rank-
revealing factorizations, we review the QRP algorithm and then we introduce
QRDM, a block algorithm for RRQR by means of deviation maximization; fur-
thermore, we give theoretical worst case bounds for the smallest singular value
of the R factor of the RRQR factorizations obtained with these two methods.
In Section 3.1.5 we discuss some fundamental issues regarding the implementa-
tion of QRDM; in Section 3.2 we compare QP3 and QRDM against a relevant
database of singular matrices.

3.1 Rank-Revealing QR decompositions

Let us introduce the mathematical formulation for the problem of finding a rank-
revealing decomposition of a matrix A of size m × n. We say that the matrix
A has numerical rank 1 ≤ r ≤ min(m,n) if σr+1(A)≪ σr(A) and σr+1(A) ≈ ϵ,
see [43], where ϵ is the machine precision. Let Π denote a permutation matrix
of size n, then we can compute

AΠ = QR = (Q1 Q2)

(︃
R11 R12

R22

)︃
, (3.1)

where Q is an orthogonal matrix of order m, Q1 ∈ Rm×r and Q2 ∈ Rm×(m−r),
R11 is upper triangular of order r, R12 ∈ Rr×(n−r) and R22 ∈ R(m−r)×(n−r).
The blank space in the left bottom corner has to be intended as a zero block of
size (m− r)× r. The QR factorization above is called rank-revealing if

σmin(R11) = σr(R11) ≈ σr(A),

or
σmax(R22) = σ1(R22) ≈ σr+1(A),

or both conditions hold. Notice that if σmin(R11)≫ ϵ and ∥R22∥ is small, then
the matrix A has numerical rank r, but the converse is not true. In other words,
even if A has (min(m,n)−r) small singular values, it is does not follow that any
permutation Π yields a small ∥R22∥, even if there exist strategies that ensure
a small value of ∥R22∥ by identifying and removing small singular values, see
e.g. [42, 75]. It is easy to show that for any factorization like (3.1) the following
relations hold

σmin(R11) ≤ σr(A), (3.2)

σmax(R22) ≥ σr+1(A). (3.3)

20

The proof directly follows by applying the interlacing inequalities for singular
values [133], namely

σk(A) ≥ σk(B) ≥ σk+r+s(A), k ≥ 1,

which hold for any (m− s)× (n− r) submatrix B of A. In fact we have

σmin(R11) = σmin

(︃
R11

0

)︃
= σr((Q

TAΠ)(:, 1 : r)) ≤ σr(Q
TAΠ) = σr(A),

σmax(R22) = σmax(0 R22) = σ1((Q
TAΠ)(r + 1 : m, :)) ≥ σr+1(Q

TAΠ) = σr+1(A).

We also used the invariance of the singular values under orthogononal trans-
formations and under the insertion of a zero block, see equations (2.1)–(2.3).
Ideally, the best rank-revealing QR decomposition is obtained by the column
permutation Π which solves

max
Π

σmin(R11). (3.4)

However, the problem above clearly has a combinatorial nature. Therefore,
algorithms that compute RRQR usually provide (see, e.g. [43, 93]) at least one
of the following bounds

σmin(R11) ≥
σr(A)

p(n)
, (3.5)

σmax(R22) ≤ σr+1(A)q(n), (3.6)

where p(n) and q(n) are low degree polynomials in n. These are worst case
bounds and are usually not sharp. We provide a bound of type (3.5) in Sec-
tion 3.1.3.

3.1.1 QR factorization with column pivoting

Let us introduce the QR factorization with column pivoting proposed by Businger
and Golub [33], which can be labeled as a greedy approach in order to cope with
the combinatorial optimization problem (3.4). Suppose at the s-th algorithmic
step we have already selected s < r well-conditioned columns of A, which are
moved to the leading positions by the permutation matrix Π(s) as follows

AΠ(s) = Q(s)R(s) = Q(s)

(︄
R

(s)
11 R

(s)
12

R
(s)
22

)︄
, (3.7)

where R
(s)
11 is an upper triangular block of order s, and the blocks R

(s)
12 and R

(s)
22

have size s× (n− s) and (m− s)× (n− s) respectively. The block R
(s)
22 is what

is left to be processed, and it is often called “trailing matrix”. Let us introduce

the following column partitions for R
(s)
12 , R

(s)
22 respectively

R
(s)
12 =

(︂
b
(s)
1 . . .b

(s)
n−s

)︂
,

R
(s)
22 =

(︂
c
(s)
1 . . . c

(s)
n−s

)︂
.

(3.8)

21

We aim to select, within the n − s remaining columns, the column such that

the condition number of the block R
(s+1)
11 is the largest possible. Formally, we

would like to find the index js that solves

σmin

(︄
R

(s)
11 b

(s)
js

c
(s)
js

)︄
= max

1≤i≤n−s
σmin

(︄
R

(s)
11 b

(s)
i

c
(s)
i

)︄
. (3.9)

Define the vector u(s) whose entry u
(s)
i is the i-th partial column norm of AΠ(s),

that is the norm of the subcolumn with row indices ranging from m− ns to m,
namely {︄

u
(s)
i =

⃦⃦⃦
c
(s)
i−s

⃦⃦⃦
, s < i ≤ n,

u
(s)
i = 0, i ≤ s.

Using the following fact

σmin

(︄
R

(s)
11 b

(s)
js

c
(s)
js

)︄
= σmin

(︄
R

(s)
11 b

(s)
j

u
(s)
s+js

)︄
,

which is a simple consequence of the invariance of singular values under left
multiplication by orthogonal matrices and the insertion of null rows (2.3), and
using the bound (2.6), we can approximate (up to a factor

√
s+ 1) the smallest

singular value as

σmin

(︄
R

(s)
11 b

(s)
js

c
(s)
js

)︄
≈ min

h

⃦⃦⃦⃦
⃦⃦eTh

(︄
R

(s)
11 b

(s)
js

u
(s)
s+js

)︄−1
⃦⃦⃦⃦
⃦⃦
−1

,

where eh is the h-th element of the canonical basis of Rs+1.
Using this result, as argued in [43], the maximization problem (3.9) can be

solved approximately by solving

js = argmax
s+1≤i≤n

u
(s)
i ≈ argmax

1≤i≤n−s
σmin

(︄
R

(s)
11 b

(s)
i

c
(s)
i

)︄
.

Notice that this strategy requires to compute the norms of columns c
(s)
i , 1 ≤

i ≤ n − ns, whose size changes at each iteration. For an efficient implementa-
tion, the column norms of the trailing matrix can be updated, instead of being
recomputed from scratch, by exploiting the following property [81]

Qa =

(︃
β
c

)︃
∈ R
∈ Rm−1 ⇒ ∥a∥2 = ∥Qa∥2 = β2 + ∥c∥2,

which holds for any orthogonal matrixQ and any vector a of orderm. Therefore,

once initialized the vector u(0), whose entries are u
(0)
i = ∥ai∥2, with 1 ≤ i ≤ n,

we can perform the following update

u
(s+1)
i =

⎧⎨⎩
√︃(︂

u
(s)
i

)︂2
− r2si, s+ 1 ≤ i ≤ n, 1 ≤ s ≤ n,

0, i < s+ 1,

(3.10)

22

where rsi is the entry of indices (s, i) in R(s), 1 ≤ s ≤ m, 1 ≤ i ≤ n. The
partial column norm update allows to reduce the operation count from O(mn2)
to O(mn). Actually, the formula (3.10) cannot be applied as it is because
of numerical cancellation, and it needs to modified, see e.g. [70] for a robust
implementation.

The resulting procedure is referred as QR factorization with column piv-
oting, and it is presented in Algorithm 2. In a real implementation, the QR
decomposition in computed in place: the upper triangular part of A if overwrit-
ten with the triangular factor R, the lower triangular part of A together with n
additional vector of size n is used to store the Householder vectors that form the
orthogonal factor Q and a vector of size n is used to represent the permutation
matrix Π. A block version of Algorithm 2 has been proposed [119], and it is
currently implemented in LAPACK’s xgeqp3 routine, that we will use in the
numerical section for comparison.

Algorithm 2 QR with column pivoting (QRP)

Inputs: A
Outputs: Q,R,Π

1: initialize u(0) = (ui) = (∥ai∥), R(0) = A, Q(0) = I, Π(0) = I
2: for s = 0, . . . , n− 1 do
3: j = argmaxu(s)(s+ 1 : n)
4: move the element of index s+ j to the leading position s+1 of R(s) and

u(s)

5: compute the Householder reflector v(s) w.r.t. R
(s)
22 (1)

6: update the trailing matrix R(s+1)(s+ 1 : m, s+ 1 : n) =(︁
I − v(s)(v(s))T

)︁
R

(s)
22

7: update u(s+1), Q(s+1), Π(s+1)

8: end for
9: Q = Q(n−1), R = R(n−1), Π = Π(n−1)

Remark 1. Such a choice of pivot can be explained with a geometric interpre-

tation. Introduce the following block column partitioning R(s) =
(︂
R

(s)
1 R

(s)
2

)︂
,

Q(s) =
(︂
Q

(s)
1 Q

(s)
2

)︂
, and recall that we have

R
(︂
Q

(s)
1

)︂
= R

(︂
R

(s)
1

)︂
R
(︂
Q

(s)
2

)︂
= R

(︂
R

(s)
1

)︂⊥
.

where R(B) denotes the subspace spanned by the columns of a matrix B. Every
unprocessed column of A rewrites as

ai = Q
(s)
1 b

(s)
i−s +Q

(s)
2 c

(s)
i−s,

where Q
(s)
1 b

(s)
i−s and Q

(s)
2 c

(s)
i−s are the orthogonal projections of ai on R

(︂
R

(s)
1

)︂
and R

(︂
R

(s)
1

)︂⊥
respectively. The most linearly independent column ai from the

23

ones already processed can be seen as the one with the largest orthogonal pro-
jection on the complemented subspace of the subspace spanned by such columns,
namely

max
i>s

⃦⃦⃦⃦
P
R
(︂
R

(s)
1

)︂⊥ (ai)

⃦⃦⃦⃦
= max

i>s

⃦⃦⃦
Q

(s)
2 c

(s)
i−s

⃦⃦⃦
.

However, the matrix Q(s) is never directly available unless it is explicitly com-
puted. We then settle for the the solution of the maximization problem

max
i>s

⃦⃦⃦
c
(s)
i−s

⃦⃦⃦
.

3.1.2 QR factorization with deviation maximization piv-
oting

Consider the partial factorization in eq. (3.7), and now suppose at the s-th algo-
rithmic step we have already selected ns, with s ≤ ns < r, linearly independent

and well-conditioned columns of A, so that R
(s)
11 is upper triangular of order ns,

while blocks R
(s)
12 and R

(s)
22 have size ns × (n − ns) and (m − ns) × (n − ns),

respectively.
We aim to select ks, with ns+1 = ns + ks ≤ r, linearly independent and

well-conditioned columns from the remaining n − ns columns of A, which are
also sufficiently linearly independent from the ns columns already selected, in
order to keep the smallest singular value of the R11 block as large as possible.
Ideally, we look for those columns with indices j1, . . . , jks

that solve

σmin

(︄
R

(s)
11 b

(s)
j1

. . . b
(s)
jks

c
(s)
j1

. . . c
(s)
jks

)︄
= max

1≤i1,...,iks≤n−ns

σmin

(︄
R

(s)
11 b

(s)
i1

. . . b
(s)
iks

c
(s)
i1

. . . c
(s)
iks

)︄
.

(3.11)

Of course, this maximization problem has the same combinatorial nature as
problem (3.4), so we rather solve it approximately. We propose to approximate
the indices {j1, . . . , jks

} that solve problem (3.11) with the indices selected by
the deviation maximization procedure presented in Algorithm 1 applied to the

trailing matrix R
(s)
22 . In order to define the candidate set exploiting the column

norm vector, we set v1 = u(s)(ns + 1 : n). Since no additional information
is available, we set v2 = 0 and τ2 = 0, while suppose the values of τθ and
τu := τ1 are chosen accordingly to equations (2.12) and (2.14), respectively.
More efficient choices will be widely discussed in Section 3.2. To sum up, the
indices j1, . . . , jks

are obtained by Algorithm 1 as follows

{j1, . . . , jks} = DM
(︂
R

(s)
22 ,u

(s)(ns + 1 : n),0, τu, 0, τθ, kmax

)︂
.

For sake of brevity, let us write

B(s) =
(︂
b
(s)
j1

. . .b
(s)
jks

)︂
∈ Rns×k,

C(s) =
(︂
c
(s)
j1

. . . c
(s)
jks

)︂
∈ R(m−ns)×k,

24

and byB(s) and C(s) the matrices made up by the remaining unselected columns.
The rest of the block update, which we detail below, proceeds in an analogous
way to the recursive block QR. Let ˜︁Q(s) be an orthogonal matrix of order (m−
ns) such that (︂ ˜︁Q(s)

)︂T
C(s) =

(︃
T (s)

0

)︃
, (3.12)

where T (s) is an upper triangular matrix of size (m − ns) × ks. The matrix˜︁Q(s) is obtained as a product of ks Householder reflectors, that we represent by
means of the so-called compact WY form [124] as

˜︁Q(s) = I − Y (s)W (s)
(︂
Y (s)

)︂T
,

where Y (s) is lower trapezoidal with ks columns and W (s) is upper triangular
of order ks. This allows us to carry out the update of the rest of trailing matrix
by means of BLAS-3 kernels, for performance efficiency, that is(︂ ˜︁Q(s)

)︂T
C(s) =

(︃
T (s)

R
(s+1)
22

)︃
, (3.13)

where T (s) has size ks × (n− ns+1) and the new trailing matrix R
(s+1)
22 has size

(m − ns+1) × (n − ns+1), for ns+1 = ns + ks. Denoting by ˜︁Π(s) a permuta-
tion matrix that moves columns with indices j1, . . . , jks

to the current leading

positions, we set Π(s+1) = Π(s)˜︁Π(s) and

Q(s+1) = Q(s)

(︃
I ˜︁Q(s)

)︃
∈ Rm×m,

then the overall factorization of AΠ(s+1) takes the form

Q(s)

(︃
R

(s)
11 B(s) B(s)

C(s) C(s)

)︃
= Q(s+1)

⎛⎜⎝ R
(s)
11 B(s) B(s)

T (s) T (s)

R
(s+1)
22

⎞⎟⎠ , (3.14)

where, for the successive iteration, we set

R
(s+1)
11 =

(︃
R

(s)
11 B(s)

T (s)

)︃
∈ Rns+1×ns+1 ,

R
(s+1)
12 =

(︃
B(s)

T (s)

)︃
∈ Rns+1×(n−ns+1).

Last, we point out that the partial column norms can be updated at each it-
eration also in this case with some straightforward changes of equation (3.10),
namely

u
(s+1)
j =

⎧⎪⎪⎨⎪⎪⎩
⌜⃓⃓⎷(︂u(s)

j

)︂2
−

ns+1∑︂
l=ns

r2lj , ns+1 < j ≤ n, ns+1 ≤ n,

0, j ≤ ns+1.

25

The resulting procedure is called QR factorisation with deviation maximization
pivoting and it presented in Algorithm 3. The QRP algorithm has the particular

Algorithm 3 QR with Deviation Maximization (QRDM)

Inputs: A, τu, τθ, kmax

Outputs: Q,R,Π
1: set ns = 0, s = 0, u(0) = (ui) = (∥ai∥), R(0) = A, Q(0) = I, Π(0) = I
2: while ns < n do

3: {j1, . . . , jks} = DM
(︂
R

(s)
22 ,u

(s)(ns + 1 : n),0, τu, 0, τθ, kmax

)︂
4: move elements of indices ns + j1, . . . , ns + jks

to the leading positions
ns + 1, . . . , ns + ks of R(s) and u(s)

5: for l = 1, . . . , ks do

6: compute the Householder reflector v(ns+l) w.r.t. R
(s)
22 (l : (m− ns), l)

7: update R(s+1)(ns + l : m,ns + l : ns + ks) =(︁
I − v(ns+l)(v(ns+l))T

)︁
R

(s)
22 (l : (m− ns), l : ks)

8: end for
9: compute the block representation W (s), Y (s) of v(ns+1), . . . ,v(ns+ks)

10: block update R(s+1)(ns + 1 : m,ns + ks + 1 : n) =(︁
I − Y (s) (W (s))T (Y (s))T

)︁
R

(s)
22 (ks + 1 : (n− ns))

11: update u(s+1), Q(s+1), Π(s+1)

12: ns = ns + ks, s = s+ 1
13: end while
14: Q = Q(s), R = R(s), Π = Π(s)

feature that the diagonal elements of the final upper triangular factor R are
monotonically non increasing in modulus. This property cannot be guaranteed
by the QRDM algorithm, as by other recently proposed pivoting strategies [55].
In practice, there are small fluctuations around a non-increasing trend.

3.1.3 Worst-case bound on the smallest singular value

Let us denote by σ(s) the smallest singular value of the computed R
(s)
11 block at

step s, that is

σ(s) = σmin

(︂
R

(s)
11

)︂
.

Notice that it corresponds exactly to the s-th singular value of R
(s)
11 computed

with the standard column pivoting, while it corresponds to the ns-th singular

value when R
(s)
11 is computed with the deviation maximization. Let us first state

an estimate of σ(s+1) for QRP [43].

Theorem 1. Let R
(s)
11 be the upper triangular factor of order s computed by

Algorithm 2. Then we have

σs+1 ≥ σs+1(A)
σs

σ1(A)

1√︁
2(n− s)(s+ 1)

.

26

Proof. We make use of (2.6) in order to estimate σs+1 by the reciprocal of the
largest 2-norm of the rows of the inverse(︂

R
(s+1)
11

)︂−1

=

(︃
R−1 −R−1bu−1

u−1

)︃
,

where we dropped the subscript and the superscript on b
(s)
js

, u
(s)
s+js

, and on

the matrix R
(s)
11 and its inverse, which will be denoted as b, u, R and R−1

respectively.
The norm of the row with the largest norm among the leading s rows is bounded
by

max
i
∥eTi R−1∥+ ∥R−1bu−1∥ ≤ 1

σs
+
∥b∥
σs+1u

.

Since a+ b ≤
√
2
√
a2 + b2, we have

max
i
∥eTi R−1∥+ ∥R−1bu−1∥ ≤

√
2

√︁
u2 + ∥b∥
σsu

≤
√
2
∥A∥
σsu

,

where the last inequality follows from the fact that u2 + ∥b is the norm of the
s+js-th column of AΠ(s). The norm u−1of the s+1-st row of the inverse clearly
cannot exceed the bound for the leading s rows. Using (2.4) and the interlacing
property of singular values (3.3) we have

u = max
1≤i≤n−s

u
(s)
s+i ≥

σs+1(A)√
n− s

.

Last, (2.6) yields

σs+1 ≥ u
σs

σ1(A)

1√︁
2(s+ 1)

≥ σs+1(A)
σs

σ1(A)

1√︁
2(n− s)(s+ 1)

.

Before coming to the main result, we introduce the following auxiliary Lemma.

Lemma 5. Consider the s-th algorithmic step of Algorithm 3. With reference
to the notation used for introducing the block partition in (3.14), we have

σmin

(︂
T (s)

)︂
≥
√︁
τu(γ + τu − 1)√
n− ns+1 + 1

σns+1(A). (3.15)

Proof. Consider following column partitions

T (s) =
(︂
t
(s)
1 . . . t

(s)
ks

)︂
,

T (s) =
(︂
t
(s)
ks+1 . . . t

(s)
n−ns

)︂
,

R
(s+1)
22 =

(︂
r
(s+1)
ks+1 . . . r

(s+1)
n−ns

)︂
,

27

and set r
(s+1)
j = 0, for 1 ≤ j ≤ ks. Moreover, let T (s) =

(︂
t
(s)
i,j

)︂
, with

1 ≤ i ≤ j ≤ ks, and T (s) =
(︂
t
(s)
i,j

)︂
with 1 ≤ i ≤ k, 1 ≤ j ≤ n− ns. First, notice

that by eq. (3.3) we have⃦⃦⃦⃦
⃦ t

(s)
ks,ks

t
(s)
ks,ks+1, . . . , t

(s)
ks,n−ns

0 R
(s+1)
22

⃦⃦⃦⃦
⃦ ≥ σns+1

(A).

From eq. (2.4), we have⃦⃦⃦⃦
⃦ t

(s)
ks,ks

t
(s)
ks,ks+1, . . . , t

(s)
ks,n−ns

0 R
(s+1)
22

⃦⃦⃦⃦
⃦
2

≤ (n− ns+1 + 1)max

{︃(︂
t
(s)
ks,ks

)︂2
, max
j≥k+1

(︃⃦⃦⃦
r
(s)
j

⃦⃦⃦2
+
(︂
t
(s)
ks,j

)︂2)︃}︃
.

Since
(︂
t
(s)
ks,j

)︂2
≤
⃦⃦⃦
t
(s)
j

⃦⃦⃦2
, for all 1 ≤ j ≤ n − ns, and computing the maximum

on a larger set of indices, we have

max

{︃(︂
t
(s)
ks,ks

)︂2
, max
j≥k+1

(︃⃦⃦⃦
r
(s)
j

⃦⃦⃦2
+
(︂
t
(s)
k,j

)︂2)︃}︃
≤ max

{︃⃦⃦⃦
t
(s)
ks

⃦⃦⃦2
, max
j≥k+1

(︃⃦⃦⃦
r
(s)
j

⃦⃦⃦2
+
⃦⃦⃦
t
(s)
j

⃦⃦⃦2)︃}︃
≤ max

j≥1

(︃⃦⃦⃦
r
(s)
j

⃦⃦⃦2
+
⃦⃦⃦
t
(s)
j

⃦⃦⃦2)︃
.

From equations (3.12-3.13), for all 1 ≤ j ≤ n− ns, we have⃦⃦⃦
c
(s)
j

⃦⃦⃦2
=
⃦⃦⃦
r
(s)
j

⃦⃦⃦2
+
⃦⃦⃦
t
(s)
j

⃦⃦⃦2
,

and, finally, since
⃦⃦⃦
t
(s)
1

⃦⃦⃦2
=
⃦⃦⃦
c
(s)
1

⃦⃦⃦2
= maxj

⃦⃦⃦
c
(s)
j

⃦⃦⃦2
and by using Lemma 4, we

get ⃦⃦⃦⃦
⃦ t

(s)
ks,ks

t
(s)
ks,ks+1, . . . , t

(s)
ks,n−ns

0 R
(s+1)
22

⃦⃦⃦⃦
⃦
2

≤ (n− ns+1 + 1)
⃦⃦⃦
c
(s)
1

⃦⃦⃦2
≤ n− ns+1 + 1

τu(γ + τu − 1)
σ2
min

(︂
C(s)

)︂
.

We can conclude by noticing that σmin

(︁
T (s)

)︁
= σmin

(︁
C(s)

)︁
, since the two

matrices differ by a left multiplication by an orthogonal matrix.

By the interlacing property of singular values, we have

σ(s+1) ≤ min

{︃
σ(s), σmin

(︃
B(s)

T (s)

)︃}︃
,

28

thus the bounds on σ(s) and σmin(T
(s)) are, by themselves, not a sufficient

condition. Let us introduce the following result, which provides a bound of type
(3.5) for QRDM.

Theorem 2. Let R
(s)
11 be the upper triangular factor of order ns computed by

Algorithm 3. Suppose that σ(s) is a good approximation of σns(A). Then e have

σ(s+1) ≥ σns+1
(A)

σ(s)

σ1(A)

1√︁
2(n− ns+1)ns+1

√︁
τu(γ + τu − 1)

k2sns
.

Proof. Let us drop the subscript and the superscript on B(s), T (s), R
(s)
11 and

its inverse
(︂
R

(s)
11

)︂−1

, which will be denoted as B, T , R and R−1 respectively.

Then, the inverse of matrix R
(s+1)
11 is given by(︂

R
(s+1)
11

)︂−1

=

(︃
R−1 −R−1BT−1

T−1

)︃
.

Let us introduce the following partitions into rows

F = R−1BT−1 =

⎛⎜⎝ fT1
...

fTns

⎞⎟⎠ , R−1 =

⎛⎜⎝ gT
1
...

gT
ns

⎞⎟⎠ , T−1 =

⎛⎜⎝ hT
1
...

hT
ks

⎞⎟⎠ .

The idea is to use eq. (2.6), that is

σ(s+1) ≤ min
h

⃦⃦⃦⃦
eTh

(︃
R−1 F

T−1

)︃⃦⃦⃦⃦−1

≤ √ns+1σminσ
(s+1),

to estimate the minimum singular value up to a factor
√
ns+1. For 1 ≤ h ≤ ns+1

we have ⃦⃦⃦⃦
eTh

(︃
R−1 F

T−1

)︃⃦⃦⃦⃦2
=

{︄
∥gh∥2 + ∥fh∥2, h ≤ ns,

∥hh−ns
∥2, h > ns.

We can bound ∥gh∥ using eq. (2.6) again, which gives

σ(s) ≤ min
h

(︂
∥gh∥−1

)︂
≤
√
nsσ

(s).

In particular, for every 1 ≤ h ≤ ns, we get

σ(s) ≤ min
h

(︂
∥gh∥−1

)︂
≤ ∥gh∥−1

,

and thus we have

∥gh∥ ≤=
1

σ(s)
=

1

σmin(R)
= σmax(R

−1) = ∥R−1∥.

29

Similarly, we can bound ∥hh−ns∥ by ∥T−1∥. Let us now concentrate on bounding
∥fh∥. We have

∥fh∥2 ≤ ∥fh∥1 =

ks∑︂
l=1

|fhl| =
ks∑︂
l=1

⃓⃓⃓⃓
⃓
ks∑︂
i=1

(R−1B)hiT
−1

il

⃓⃓⃓⃓
⃓

=

ks∑︂
l=1

⃓⃓⃓⃓
⃓⃓ ks∑︂
i=1

ns∑︂
j=1

R−1
hjBjiT

−1
il

⃓⃓⃓⃓
⃓⃓

≤
ks∑︂
l=1

ks∑︂
i=1

ns∑︂
j=1

⃓⃓
R−1

hj

⃓⃓
|Bji|

⃓⃓
T−1

il

⃓⃓
≤

ks∑︂
l=1

ks∑︂
i=1

ns∑︂
j=1

⃦⃦
R−1

⃦⃦
max
∥B∥max

⃦⃦
T−1

⃦⃦
max

= k2sns

⃦⃦
R−1

⃦⃦
max
∥B∥max

⃦⃦
T−1

⃦⃦
max

≤ k2sns

⃦⃦
R−1

⃦⃦
∥B∥

⃦⃦
T−1

⃦⃦
=

k2sns

σ(s)
∥B∥

⃦⃦
T−1

⃦⃦
,

where we use the following facts ∥x∥2 ≤ ∥x∥1, and ∥A∥max ≤ ∥A∥, see (2.5).
Moreover, we can write

∥gh∥2 + ∥fh∥2 ≤
1

(σ(s))2
+

k4sn
2
s

(σ(s))2
∥B∥2

⃦⃦
T−1

⃦⃦2
=

σ2
min(T) + k4sn

2
s ∥B∥

2

(σ(s)σmin(T))2
≤ ∥T∥

2 + k4sn
2
s ∥B∥

2

(σ(s)σmin(T))2

≤ 2k4sn
2
s

(σ(s)σmin(T))2
max

{︁
∥T∥2, ∥B∥2

}︁
≤ 2k4sn

2
s

(σ(s)σmin(T))2
∥A∥2,

where, in the last inequality, we used the interlacing property and the invariance
under matrix transposition of the singular values. In fact

σ1(A) ≥ σ1

(︃
B
T

)︃
= σ1

(︁
BT TT

)︁
≥ max {σ1(B), σ1(T)} .

Hence, we get
1√︁

∥gh∥2 + ∥fh∥2
≥ σ(s)σmin(T)√

2k2snsσ1(A)
.

If σ(s) is a good approximation of σns
(A), we can suppose that σ(s)/σns

(A) ≈ 1,

30

and we can write

√
ns+1σ

(s+1) ≥ min

{︄
min
h
∥hh∥−1,min

h

1√︁
∥gh∥2 + ∥fh∥2

}︄

≥ min

{︃
1,

σ(s)

√
2k2snsσ1(A)

}︃
σmin(T)

=
σ(s)

√
2k2snsσ1(A)

σmin(T).

Finally, using Lemma 5, we get

σ(s+1) ≥ σns+1
(A)

σ(s)

σ1(A)

1√︁
2(n− ns+1)ns+1

√︁
τu(γ + τu − 1)

k2sns
,

which is the desired bound.

The result above shows that even if the leading ns columns have been care-
fully selected, so that σ(s) is an accurate approximation of σns

(A), there could
be a potentially dramatic loss of accuracy in the estimation of the successive
block of singular values, namely σns+1(A), . . . , σns+1

(A), just like for the stan-
dard column pivoting. In fact, it is well known that failure of QRP algorithm
may occur (one such example is the Kahan matrix [96]), as well as for other
greedy algorithms, but it is very unlikely in practice.

3.1.4 Termination criteria

In principle, both QRP and QRDM reveal the rank of a matrix. In finite
arithmetic we have (︄

R̂
(s)

11 R̂
(s)

12

R̂
(s)

22

)︄
, (3.16)

where R̂
(s)

ij is the block R
(s)
ij computed in finite representation, for i = 1, 2, j = 2.

If the block R̂
(s)

22 is small in norm, then it is reasonable to say that the matrix

A has rank ns, where ns is the order of the upper triangular block R̂
(s)

11 . Golub
and Van Loan [81] propose the following termination criterion⃦⃦⃦

R̂
(s)

22

⃦⃦⃦
≤ ϵ ∥A∥ , (3.17)

where ϵ is a parameter depending on the machine precision ϵ. Notice that even
if a block R22 with small norm implies numerical rank-deficiency, the converse
is not true in general: an example is the Kahan matrix [96]. Since the 2-norm
is not directly available, we make use of the inequalities (2.4). Let us write the

column partition R̂
(s)

22 =
(︂
ĉ
(s)
1 . . . ĉ

(s)
n−ns

)︂
. We have⃦⃦⃦

R̂
(s)

22

⃦⃦⃦
≤
√
n− ns max

i

⃦⃦⃦
ĉ
(s)
i

⃦⃦⃦
, max

i
∥ai∥ ≤ ∥A∥ .

31

Therefore, the stopping criterion (3.17) holds if

√
n− ns max

i

⃦⃦⃦
ĉ
(s)
i

⃦⃦⃦
≤ ϵmax

i
∥ai∥ . (3.18)

Notice that the contrary does not hold. In Section 3.2 we test this practical
stopping criterion (3.18) and discuss the following choice

ϵ = ϵ n, (3.19)

3.1.5 Implementation of QR with deviation maximization
algorithm

In this section we discuss implementation aspects of the QRDM procedure. In
particular, we address the problem of choosing less restrictive values of the pa-
rameters τu and τθ than the ones imposed by equation (2.12), without affecting
the robustness of the computed QR and the structure of the pivoting, which
has a significant impact on the cost of the algorithm.

We now describe the most crucial aspects of a real implementation of Algo-
rithm 3. First, the deviation maximization block pivoting cannot be carried out
when the maximum partial column norm of the trailing matrix is of the order
of the working precision ϵ, that is when (2.17) holds. In such case, a practi-
cal implementation switches from the deviation maximization block pivoting to
another one, e.g. the standard column pivoting.

Let us now detail how to choose τu and τθ. In practice, as we detail in
Section 3.2, it is desirable to relax the requirements given by Lemma 5 on
the choice of the values for τu and τθ, since their theoretical bounds turn out
to be very demanding with a consequent limitation of the performance of the
overall factorization. On the other side, if we settle for any choice of τu, τθ
with 1 ≥ τu, τθ ≥ 0, then the deviation maximization may identify a set of
numerically linear dependent columns. In order to overcome this issue, we
incorporate an additional check in the Householder procedure in the loop at
step 5 of Algorithm 3, which is modified and replaced by the following loop.

1: for l = 1, . . . , ks do

2: compute the Householder reflector v(ns+l) w.r.t. R
(s)
22 (l : (m− ns), l)

3: update R(s+1)(ns + l : m,ns + l : ns + ks) =
(︁
I − v(ns+l)(v(ns+l))T

)︁
R

(s)
22 (l : (m− ns), l : ks)

4: if l + 1 < ks and
⃦⃦⃦
R

(s)
22 (l + 1 : (m− ns), l + 1)

⃦⃦⃦
< εs then

5: break for
6: end if
7: end for

Recall that the columns chosen by the deviation maximization at the s-th algo-
rithmic step satisfy⃦⃦⃦

R
(s)
22 (:, j)

⃦⃦⃦
≥ τu max

1≤i≤(n−ns)

⃦⃦⃦
R

(s)
22 (:, i)

⃦⃦⃦
, (3.20)

32

for all j ∈ {j1, . . . , jks}. The prior check introduced at step 5 breaks the House-
holder procedure when a partial column norm ∥R(s)(ns + l : m,ns + l)∥ becomes
smaller than εs defined above, in other words, if the l-th column is not suffi-
ciently linearly independent from the subspace spanned by the first l−1 columns
already processed. Different choices of εs are possible, e.g. a small and constant
threshold. Here, we propose to fix the value of εs equal to the right-hand side
of (3.20). Numerical tests show that this choice works well in practice.

The modified loop may cause the Householder triangularization to terminate
with l < ks computed reflectors, and the algorithm continues with by setting
ks = l. At the next iteration, the pivoting strategy moves the rejected column
from the leading position, if necessary. As we show in Section 3.2, the break
mechanism just presented allows to choose values for τu and τθ in a rather simple
way and to obtain competitive results in execution times.

3.2 Numerical tests

In this section we discuss the numerical accuracy of QRDM against the SVD
decomposition and the the block QRP algorithm, briefly called QP3 [119].
We report experimental results comparing the double precision codes xgeqp3

and dgeqp3 from LAPACK, and dgeqrdm, a double precision C implemen-
tation of our block algorithm QRDM available online at the URL: https:

//github.com/mdessole/qrdm. All tests are carried out on a platform with
an Intel(R) Core(TM) i7-2700K processor and a 8 GB system memory, employ-
ing CBLAS and LAPACKE, the C reference interfaces to BLAS and LAPACK
implementations on Netlib, respectively.
Particular importance is given to the values on the diagonal of the upper trian-
gular factor R of the RRQR factorization, which are compared with the singular
values of the R11 block and with the singular values of the input matrix A. The
tests are carried out on a subset of matrices from the San Jose State University
Singular Matrix Database, which were used in other previous works on the topic,
see e.g. [55, 83]. We show results coming from two subsets of this collection,
that we call:

• “small matrices”: it consists of the 261 matrices with m ≤ 1024, 32 < n ≤
2048, sorted in ascending order with respect to the number of columns n;

• “big matrices”: it consists of the first 247 matrices with m > 1024, n >
2048, sorted in ascending order with respect to the number of columns n.

For each matrix A, we denote by σi the i-th singular value of A computed
with LAPACK’s xgejsv routine, and by nr the numerical rank computed with
the option JOBA=’A’: in this case, small singular values are comparable with
round-off noise and the matrix is treated as numerically rank deficient. As the
pivoting used in QRDM does not guarantee that the diagonal values of the factor
R are monotonically non-increasing in modulus, for each matrix we denote by
di the i-th largest value among the first nr diagonal entries considered with
positive sign.

33

https://github.com/mdessole/qrdm
https://github.com/mdessole/qrdm

0 50 100 150 200 250

10 1

100

101

min
max

(a)

0 50 100 150 200 250

10 1

100

101

min
max

(b)

Figure 3.1: Ratio di/σi with QP3.

The results provided by QP3 for the two collections are summarised in Fig-
ure 3.1 and Figure 3.2. Figure 3.1 shows the values mini≤nr

di/σi (red) and
maxi≤nr di/σi (blue) for each matrix in the set “small matrices” (Figure 3.1a)
and “big matrices” (Figure 3.1b). The order of magnitude of the ratios di/σi

ranges from 10−1 to 101, i.e. the positive diagonal value di approximates the
corresponding singular value σi up to a factor 10, for i = 1,≤, nr. Figure 3.2
shows the minimum (red) and maximum (blue) values of the ratio σi(R11)/σi

for each matrix in the set “small matrices” (Figure 3.2a) and “big matrices”
(Figure 3.2b), where σi(R11) is the i-th singular value of R11 = R(1 : nr, 1 : nr)
computed with LAPACK’s xgejsv, and σi is i-th singular value of A. These
results confirm that QP3 provides an approximation of the singular values up
to a factor 10.

Before providing similar results for QRDM, let us discuss the sensitivity of
parameters τu and τθ to the rank-revealing property (3.5). To this aim, we set a
grid G of values G(i, j) = (τ iθ, τ

j
u) = (0.05 i, 0.05 j), with i, j = 0, . . . , 20, and we

consider the R factor obtained by QRDM for each matrix in the “small matrices”
collection and for each choice of pair (τ iθ, τ

j
u), i, j = 0, . . . , 20. Figure 3.3a shows

the order of magnitude of the minimum value over the “small matrices” dataset
of the minimum ratio mini≤nr

di/σi, for each value within the point grid G.
We see that the positive diagonal elements provide an approximation up to a
factor 10 of the singular values for a wide range of parameters, corresponding
to the light gray region: in practice, it is sufficient to avoid the extreme cases
τu = 0 and τθ = 1. Indeed, the presence of an inaccurate diagonal element in R,
i.e. some di that strongly underestimates the corresponding singular value σi, is
avoided thanks to the additional check proposed in (3.20), which possibly breaks
the Householder triangularization. This suggests that any choice of 1 ≥ τu > 0
and 1 > τθ ≥ 0 may lead to a rank-revealing QR decomposition. In this way,

34

0 50 100 150 200 250

10 1

100

min
max

(a)

0 50 100 150 200 250

10 1

100

min
max

(b)

Figure 3.2: Ratio σi(R11)/σi with QP3.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

u

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

u

12.0

12.5

13.0

13.5

14.0

15.0

(b)

Figure 3.3: Performance of QRDM in function of parameters τu and τθ.

35

0 50 100 150 200 250

10 1

100

101

min
max

(a)

0 50 100 150 200 250

10 1

100

101

102

min
max

(b)

Figure 3.4: Ratio di/σi with QRDM.

even a greedy setting of the algorithm is viable: if τu is almost zero and τθ near
one, the deviation maximization pivoting collects as much columns as possible.

Figure 3.3b shows the cumulative execution times for all tests in the “small
matrices” collection, for each grid point of G. It is evident that the best per-
formance is obtained toward the right-bottom corner, in correspondence of the
dark gray region, confirming that a greedy approach is convenient. However,
a too greedy choice of the parameters may yield less accurate ratios di/σi in
a very few cases. Hence, we suggest a safer choice: from now on we set and
(τθ, τu) := (0.9, 0.15), which are the optimal values for the validation set here
considered.

Figure 3.4 and Figure 3.5 summarize the results provided by QRDM for the
two collections with this parameters’ choice. Figure 3.4 shows the minimum
(red) and maximum (blue) values of the ratios di/σi for each matrix in the set
“small matrices” (Figure 3.4a) and “big matrices” (Figure 3.4b). The order
of magnitude of the ratios di/σi ranges from 10−1 to 101, i.e. the positive
diagonal value di approximate the corresponding singular value σi up to a factor
10, for i = 1,≤, nr, giving comparable results with those of QP3. Figure 3.5
shows the minimum (red) and maximum (blue) values of the ratio σi(R11)/σi

for each matrix in the set “small matrices” (Figure 3.5a) and “big matrices”
(Figure 3.5b), where σi(R11) is the i-th singular value of R11 = R(1 : nr, 1 : nr)
computed with LAPACK’s xgejsv, and σi is i-th singular value of A. Here
QRDM provides an approximation of the singular values up to a factor 102.

Let us now consider QRDM with a stopping criterion. We show the ac-
curacy in the determination of the numerical rank, and the benefits in terms
of execution times, when the matrix rank is much smaller than its number of
columns. Recall that QRDM switches to the scalar pivoting when the partial
column norms are not sufficiently large (2.17), affecting the algorithm’s perfor-

36

0 50 100 150 200 250

10 2

10 1

100

min
max

(a)

0 50 100 150 200 250

10 2

10 1

100

min
max

(b)

Figure 3.5: Ratio σi(R11)/σi with QRDM.

mance. We consider the stopping criterion in (3.18)–(3.19): the numerical rank
is this case is given by the number of total number of columns processed by
QRDM before exiting and we denote it by nQRDM

r .
Figure 3.6 shows the ratio

(︁
nQRDM
r − nr

)︁
/nr, where nr is the number of sin-

gular values larger than ϵn∥A∥ = ϵnσ1, for all matrices in the “small matrices”
(Figure 3.6a) and “big matrices” (Figure 3.6b) collections. The computed rank
is accurate in nearly all cases. Figure 3.6a shows a case in which nQRDM

r over-
estimates nr with a relative error of about 45%. This is a pathological case: the
matrix involved shows a gap in the singular values distribution and, immediately
after, a group of singular values just below the value ϵn∥A∥. The corresponding
diagonal entries of the matrix R obtained by QRDM show the same gap, but
the stopping criterion (3.18)–(3.19), which approaches the quantity ϵn∥A∥ from
below, does not detect so accurately the crossing of the threshold. Anyway,
since the diagonal entries of R describe well the corresponding gap in the singu-
lar values, even in this case, the applications can correctly truncate the R factor
in post-processing and form the corresponding Q factor.

Finally, we compare the performance of QP3 with that of QRDM in terms of
their execution times for instances in the set “big matrices”. Figure 3.7 shows
the speedup of QRDM (in red) and QRDM with stopping criterion (in blue)
over QP3, namely the ratio tQP3/tQRDM in function of tQP3, where tQP3 and
tQRDM are the execution times (in seconds) of QP3 and QRDM, respectively.
We see that QRDM achieves an average speedup of 4× for medium/large size
matrices (corresponding to higher execution times). This result is a consequence
of a higher BLAS-3 fraction of work provided by QRDM against QP3. Indeed,
in order to compute the block Householder reflector, QP3 must update the
partial column norms and identifies the next pivot by computing the maximum
column norm, while QRDM selects a block of pivot columns at once. The

37

0 50 100 150 200 250
0.00

0.25

0.45

(a)

0 50 100 150 200 250
0.10

0.05

0.00

0.05

(b)

Figure 3.6: Relative error on the computed numerical rank for QRDM.

10 1 100 101 102

time QP3 (s)

0

2

4

6

8

10

sp
ee

du
p

time QP3/QRDM
time QP3/QRDM with stop

Figure 3.7: Speedup analysis of QRDM and QRDM with stopping criterion over
QP3.

38

former strategy relies on BLAS-2 operations, while the latter mostly on BLAS-
3 operations. Moreover, the stopping criterion gives an additional advantage for
matrices whose numerical rank is much smaller than their number of columns.

Last, let us discuss briefly the effect of the block size kmax introduced to
limit the cardinality of the candidate set in equation (2.16). This parameter
depends on the specific architecture, mainly in terms of cache-memory size, and
typical values are kmax = 32, 64, 128. We observed that there is an optimal
value of kmax, in sense that it gives the best execution times for a fixed exper-
imental setting, and its computation is similar to the well-known BLAS block
size computation practice. For sake of clarity we say that on our personal com-
puter we observed the optimal value kmax = 64, but other choices gave similar
performances, e.g. kmax = 32.

3.3 Concluding remarks

In this chapter we introduced the rank-revealing QR factorization with devi-
ation maximization pivoting, briefly called QRDM, and we compared it with
the rank-revealing QR factorization with the state-of-the-art algorithm, namely
standard column pivoting, briefly QRP. We have provided a theoretical worst
case bound on the smallest singular value for QRDM and we have shown it
is similar to available results for QRP. Extensive numerical experiments con-
firmed that QRDM reveals the rank similarly to QRP and provides a good
approximation of the singular values obtained with LAPACK’s xgejsv routine.
Moreover, we have shown that QRDM has shorter execution times than those
of the BLAS-3 version of QRP implemented in LAPACK’s xgeqp3 routine in a
large number of test cases. Comparison with other RRQR algorithms is avoided,
since approaches presented in Chan [42], Foster [75] can be performed as ad-
ditional refinements, and distributed memory approaches like [55] can be used
no matter the pivoting technique. The software implementation of QRDM here
used is freely available at the URL: https://github.com/mdessole/qrdm.

39

https://github.com/mdessole/qrdm

Chapter 4

Nonnegative least squares

NonNegative Least Squares (NNLS) problems arise in many applications where
data points can be represented as nonnegative linear combinations of some
meaningful components. Such problems are frequently encountered in signal
and image processing and they are core problems in more complex computa-
tions, such as nonnegative matrix and tensor decompositions. Moreover, when
dealing with underdetermined systems of equations, the nonnegativity contraint
is known to naturally enhance sparsity of the solution, that is the solution at-
tained has few nonzeros, see e.g. [31, 76, 143, 144]. An important outcome of
this body of work is that nonnegativity alone may attain a satisfactory sparse
recovery. Over the last two decades, sparsity has become one of the most rel-
evant topics in signal processing. In general, sparsity in signals describes the
phenomenon where high dimensional data can be expressed with few measure-
ments and it results in finding a sparse solution to undertermined systems of
equations. The problem of finding the sparsest solution to an underdetermined
linear system can be formulated as a constrained ℓ0-minimization problem, but
often its solution is not practical as it is highly nonconvex and it is NP-hard in
general. However, it is well known that ℓ1-minimization gives the same solution
for a restricted class of matrices. This fact is known as ℓ0−ℓ1 equivalence and it
has been found empirically [46] and theoretically [68, 72]. The ℓ1-minimization
problem can be seen as a convex relaxation of the ℓ0-minimization problem.
Notice that NNLS is a convex problem too.

The first algorithm devised for NNLS is the Lawson-Hanson algorithm [100].
Since this seminal work, many modifications have been proposed in order to im-
prove the standard Lawson-Hanson algorithm: Bro and Jong [29] have proposed
a variation specifically designed for use in nonnegative tensor decompositions;
their algorithm, called “fast NNLS” (FNNLS), reduces the execution time by
avoiding redundant computations in nonnegative matrix factorization problems
arising in tensor decompositions and performs well with multiple right-hand
sides, which is not the case here discussed, thus we omit a comparison. Van Ben-
them and Keenan [140] presented a different NNLS solution algorithm, namely
“fast combinatorial NNLS” (FCNNLS), also designed for the specific case of a

40

large number of right-hand sides. The authors exploited a clever reorganization
of computations in order to take advantage of the combinatorial nature of the
problems treated (multivariate curve resolution) and introduced a nontrivial
initialization of the algorithm by means of unconstrained least squares solution.
The principal block pivoting method introduced by Portugal et al. [115] is an
active set type algorithm which differs from the standard Lawson-Hanson algo-
rithm, since the sequence of iterates produced does not necessarily fall into the
feasible region. The convergence is ensured provided the objective function is
strictly convex, while when we deal with underdetermined matrices it is simply
convex. Therefore this algorithm fails in sparse recovering. Surprisingly, the
Lawson-Hanson algorithm [100] does not suffer from this drawback.

The Lawson-Hanson algorithm is an active set method which incrementally
builds an optimal solution by solving at each iteration an unconstrained least
squares subproblem, e.g. by computing a QR decomposition, on a subset of
columns of the initial matrix in such a way that the objective value decreases
while the iterates are kept within the feasible region. The algorithm performs
column pivoting by selecting one column at a time and therefore it relies only on
BLAS-2 operations. Actually, the columns are not permuted, rather a vector
of indices is used to represent the permutation. In general, column pivoting
makes it more difficult to achieve high performances in QR computation, see
[17, 18, 19, 119, 20].

In this chapter we apply the deviation maximization as column selection
strategy to the Lawson-Hanson algorithm for the solution of NNLS, devising a
new algorithm we call Lawson-Hanson with Deviation Maximization (LHDM).
This algorithm allows to exploit BLAS-3 operations, leading to higher perfor-
mances. In [61], a preliminary version of this technique has led to a significant
performance gain in the execution of the Lawson-Hanson algorithm for under-
determined systems, there applied to the particular case of computing nearly-
optimal designs on high-dimensional spaces by means of the Tchakaloff theorem.
Here, we extend the theoretical discussion about the features of LHDM and
we explore the sparsity recovery ability of LHDM, comparing its performance
against several ℓ1-minimization solvers.

The rest of this chapter is organized as follows. In Section 4.1, we formally
introduce the NNLS problem and the Lawson-Hanson algorithm and we com-
bine the Lawson-Hanson method with deviation maximization. We provide a
theoretical result about finite convergence of LHDM by generalizing the analo-
gous result for the standard Lawson-Hanson. In Section 4.2, we introduce the
problem of sparse recovery. We recall results that ensure the so-called ℓ0 − ℓ1
equivalence and conditions under which the underdetermined NNLS problem
has a unique solution. Last, we recall how arbitrary signed sparse recovery can
be attained by NNLS solvers. In Section 4.3, we present a comparison of LHDM
against several ℓ1-minimization solvers in terms of performance and solutions
found. The results are shown with an extensive set of experiments. Finally,
Section 4.4 concludes the chapter.

41

4.1 Solving nonnegative least squares problems

Consider the nonnegative least squares problem

min
1

2
∥Ax− b∥22, s.t. x ≥ 0, (4.1)

where A = (a1 . . .an) is an m × n matrix, b is a vector of length m. It is well
known that

min ∥Ax− b∥2 = min
1

2
∥Ax− b∥22.

Let us define

ϕ(x) := ∥Ax− b∥2, (4.2)

where from now on ∥ · ∥ denotes the 2-norm, if not stated otherwise. We have

ϕ(x) = (Ax− b)T (Ax− b) = xTATAx− 2bTAx+ bTb,

and
minϕ(x) = minxTATAx− 2bTAx.

Note that the gradient for ϕ is

∇ϕ(x) = 2ATAx− 2ATb = −2AT (b−Ax) = −2AT r(x),

where r ∈ Rm is the residual function r(x) = b − Ax. A descend direction for
ϕ at x is any vector s ∈ Rn such that

sT∇ϕ(x) = −2(As)T r(x) < 0.

The set of points satisfying the constraints is called feasible region, and in this
case is given by the set Ω = {x ∈ Rn : x ≥ 0}. A point x is said to be feasible
if it belongs to the feasible region.

Definition 2. Let x be a feasible point, i.e. x ≥ 0. A vector s ∈ Rn is a
feasible direction at x if there exists ε > 0 such that

x+ εs ≥ 0.

Notice that if s is a feasible direction at x and si < 0, then we must have
xi > 0. The following theorem characterizes the solution of problem (4.1). For
a proof see e.g. [100].

Theorem 3. (Karush-Kuhn-Tucker conditions for NNLS) A point x⋆ ∈ Rn is
a solution of problem (4.1) if and only if there exists w⋆ ∈ Rn and a partition
Z⋆ ∪ P ⋆ = {1, . . . , n} such that

w⋆ = AT (b−Ax⋆), (4.3)

x⋆
i = 0, i ∈ Z⋆, x⋆

i > 0, i ∈ P ⋆, (4.4)

w⋆
i ≤ 0, i ∈ Z⋆, w⋆

i = 0, i ∈ P ⋆. (4.5)

42

Further discussion of this theorem, including its proof, can be found in the
literature of constrained optimization, see e.g. [74]. Equations (4.4)–(4.5) imply

x⋆
iw

⋆
i = 0, i = 1, . . . , n, (4.6)

which is also known as complementary condition.
Let us consider the i-th constraint, eTi x ≥ 0, where ei is the i-th element

of the canonical basis. The vector ei is normal to the half-space defined by the
constraint and it points towards the interior of the feasible region Ω. The point
x⋆ is in the interior of the half-spaces indexed in P ⋆ and on the boundary of
those indexed in Z⋆. The point −w⋆ is the gradient of the objective evaluated
at x⋆. Since w⋆

i = 0, i ∈ P ⋆, we have∑︂
i∈Z⋆

(−w⋆
i)(−ei) = w⋆, (4.7)

which states that the negative gradient at x⋆ is a nonnegative (−w⋆
i ≥ 0) linear

combination of the outward normals (−ei) to the constraint hyperplanes on
which x⋆ lies (i ∈ Z⋆), that is w⋆ lies in the convex cone based at x⋆ and
generated by −ei, i ∈ Z⋆.

4.1.1 The Lawson-Hanson algorithm

The first algorithm to solve (4.1) is due to Lawson and Hanson [100], and it
is presented in Algorithm 4 for completeness. It is an active set method and a
particular case of the algorithm introduced in [129] for the least squares problem
with linear inequality constraints. Recall that a constraint is said to be active
if it holds with equality, here xi = 0, it is said to be passive when it holds
with strict inequality, here xi > 0, otherwise it is violated, namely xi < 0.
Active set methods are in the family of descend algorithms, that is they look
for the solution by decreasing the objective function value, in particular at each
iteration the new solution is a feasible point in a feasible descend direction with
respect to the current solution.

Let us now describe the main features of the Lawson-Hanson algorithm.
Let Ps denote the passive set and Zs denote the active set at s-th algorithmic
step, with cardinality respectively ns and n − ns. Let us define the following
submatrices

A
(s)
P =

(︁
ai1 . . .ains

)︁
, {i1, . . . , ins

} = Ps,

A
(s)
Z =

(︁
aj1 . . .ajn−ns

)︁
, {j1, . . . , jn−ns

} = Zs.

We define the s-th iterate as x(s) =
(︂
x
(s)
1 , . . . , x

(s)
n

)︂T
∈ Rn. With an analogous

43

Algorithm 4 Lawson-Hanson (LH)

Inputs: A,b
Outputs: P ⋆, Z⋆,x⋆

1: P0 = ∅, Z0 = {1, . . . ,M}, x(0) = 0, w(0) = ATb, s = 0

2: while Zs ̸= ∅ and maxw
(s)
Z > 0 do

3: js = argmaxi w
(s)
i

4: Ps+1 = Ps ∪ {js}
5: Zs+1 = Zs \ {js}
6: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

7: while miny
(s+1)
P ≤ 0 do

8: s = s+ 1

9: Q = Ps ∩
{︂
i : y

(s)
i ≤ 0

}︂
10: α = mini∈Q x

(s−1)
i

(︂
x
(s−1)
i − y

(s)
i

)︂−1

11: x(s) = x(s−1) + α
(︁
y(s) − x(s−1)

)︁
12: Ps+1 = Ps \

{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
13: Zs+1 = Zs ∪

{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
14: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

15: end while
16: x

(s+1)
P = y

(s+1)
P , x

(s+1)
Z = 0

17: w(s+1) = AT
(︁
b−Ax(s+1)

)︁
18: s = s+ 1
19: end while
20: P ⋆ = Ps, Z

⋆ = Zs, x
⋆ = x(s)

notation to the one introduced above for matrices, we have

x
(s)
P =

(︂
x
(s)
i1

, . . . , x
(s)
ins

)︂T
∈ Rns , {i1, . . . , ins

} = Ps,

x
(s)
Z =

(︂
x
(s)
j1

, . . . , x
(s)
jn−ns

)︂T
∈ Rn−ns , {j1, . . . , jn−ns

} = Zs.

The elements of the sequence x(s) produced by Lawson-Hanson algorithm do not

leave the feasible region and we always have x
(s)
P > 0,x

(s)
Z = 0. At each outer

loop iteration, the current solution x(s) solves an unconstrained least squares
subproblem

x
(s)
P = argmin

⃦⃦⃦
A

(s)
P y − b

⃦⃦⃦
, x

(s)
Z = 0. (4.8)

44

With the notation introduced in Algorithm 4, we have

r(s) = b−Ax(s) = b−A
(s)
P x

(s)
P ,

w(s) = AT
(︂
b−Ax(s)

)︂
= AT

(︂
b−A

(s)
P x

(s)
P

)︂
= AT r(s),

w
(s)
Z = (A

(s)
Z)T

(︂
b−A

(s)
P x

(s)
P

)︂
=
(︂
A

(s)
Z

)︂T
r(s),

w
(s)
P = (A

(s)
P)T

(︂
b−A

(s)
P x

(s)
P

)︂
= 0,

where the last identity is a consequence of normal equations for (4.8). Clearly

we have
(︁
w(s)

)︁T
x(s) = 0 for every s. As shown in [100], Algorithm 4 terminates

in a finite number of steps in exact arithmetic and x(s),w(s), Ps, Zs satisfy KKT
conditions (4.4)–(4.5) on termination.

4.1.2 Implementation of Lawson-Hanson algorithm

In [100], a Fortran implementation of the NNLS solver based on the Lawson-
Hanson Algorithm 4 is provided. Steps 6 and 14 require the solution of an
unconstrained least squares problem by, e.g., QR decomposition. If the columns
indexed in the passive set are linearly independent, the QR decomposition of

A
(s)
P is essentially unique once the order of the columns in the passive set is

fixed. Every time step 6 is reached, a new column has been inserted in the
passive set, therefore QR updates by means of Householder transformation are
used. When step 14 is reached, a column has been moved back to the active
set: as a consequence, some columns of the new R factor have an extra element
under the diagonal which can be zeroed out by means of Givens transformations.
For more details, see e.g. [29, Chap. 3]. In practice, the full orthogonal factor

of the QR decomposition of A
(s)
P is never formed: at each step, an Householder

transformation or a sequence of Givens transformations is applied to the whole
matrix A and to the right-hand side b. In fact, consider the QR decomposition

A
(s)
P = Q(s)

(︃
R(s)

0

)︃
.

Then, the least square solution of problems in the form (4.8) at steps 6 and 14
is given by the following triangular linear system

R(s)y
(s)
P =

(︃(︂
Q(s)

)︂T
b

)︃(s)

P

,

which can be solved by backsubstitution. The columns of A are not physically
moved, thus no memory communication is needed. Instead, a pivoting vector is

used in order to keep trace of the order in which the columns of A
(s)
P have been

processed to form the triangular factor R(s). As it is processed only one column
at a time, these operations mainly require BLAS-2 level operations, typically
turning out into inefficient algorithms.

45

4.1.3 A simple application of deviation maximization

The deviation maximization can be used to identify a subset of indices Js to be
moved from the active set Zs to the passive set Ps at each outer iteration of the
Lawson-Hanson algorithm, as it is shown in Algorithm 5.

Algorithm 5 Simple Lawson-Hanson with Deviation Maximization

Inputs: A,b, τw, τu, τθ, kmax

Outputs: P ⋆, Z⋆,x⋆

1: P0 = ∅, Z0 = {1, . . . ,M}, x(0) = 0, w(0) = ATb, s = 0
2: while Zs ̸= ∅ and maxw(s) > 0 do
3: if ns > 0 then

4: A
(s)
P = Q(s)

(︃
R(s)

0

)︃
5:

(︁
Q(s)

)︁T
A

(s)
Z =

(︃
B(s)

C(s)

)︃
6: else
7: C(s) = A
8: end if
9: Js = DM(C(s),w(s)(ns + 1 :),u(s)(ns + 1 :), τw, τu, τθ, kmax)

10: move columns {ns + j1, . . . , ns + jks
} to the leading positions

{ns + 1, . . . , ns + ks} of A
11: Ps+1 = Ps ∪ Js
12: Zs+1 = Zs \ Js
13: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

14: while miny
(s+1)
P ≤ 0 do

15: s = s+ 1

16: Q = Ps ∩
{︂
i : y

(s)
i ≤ 0

}︂
17: α = mini∈Q x

(s−1)
i

(︂
x
(s−1)
i − y

(s)
i

)︂−1

18: x(s) = x(s−1) + α(y(s) − x(s−1))

19: move columns
{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
to the rightmost positions of

A
20: Ps+1 = Ps \

{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
21: Zs+1 = Zs ∪

{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
22: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

23: end while
24: x

(s+1)
P = y

(s+1)
P , x

(s+1)
Z = 0

25: w(s+1) = AT
(︁
b−Ax(s+1)

)︁
26: s = s+ 1
27: end while
28: P ⋆ = Ps, Z

⋆ = Zs, x
⋆ = x(s)

46

Let us detail how deviation maximization is employed here. Algorithm 1 is
applied to the submatrix C(s), where C(s) is the matrix of size (m−ns)×(n−ns)
obtained as follows(︂

Q(s)
)︂T (︂

A
(s)
P A

(s)
Z

)︂
=

(︃
R(s) B(s)

0 C(s)

)︃
.

Here Q(s) is the orthogonal factor of the QR decomposition of A
(s)
P , and B(s) is

a matrix of size ns × (n− ns). We make use the dual vector in order to define
the candidate set of indices of the deviation maximization, thus we set v1 =
w(s)(ns + 1 : n), and we exploit the partial column norm vector as additional
information, that is we take v2 = u(s)(ns + 1 : n). For the moment, let us use
the parameters τθ, τw := τ1 and τu := τ2 without stating their values, which will
be discussed in what follows. To sum up, the set Js = {j1, . . . , jks

} is obtained
by Algorithm 1 as follows

Js = DM(C(s),w(s)(ns + 1 :),u(s)(ns + 1 :), τw, τu, τθ, kmax).

Both steps 13 and 22 require the solution of an unconstrained least squares
problem in the form eq. (4.8), e.g. by QR decomposition. This can be done
efficiently by exploiting low-rank QR updates/downdates. Just like the classic
Lawson-Hanson algorithm, this strategy ensures that the new iterate will stay
feasible, provided that first an intermediate solution y(s) is computed and then,
eventually, an analogous inner loop will keep the iterate x(s) into the feasible
region.

Let us spend the rest of this section to derive conditions on τθ, τw, τu under
which the finite termination of Algorithm 5 is guaranteed, as it was shown for
Algorithm 4 in [100]. Let us state and prove the following result, which is a
generalization of Lemma 23.3 of [100] in the case of multiple columns.

Lemma 6. Let A ∈ Rm×(n−k) and A′ ∈ Rm×k two matrices such that their
concatenation (A A′) is a full column rank matrix of size m× n. Let Q be the
orthogonal m×m factor of the QR decomposition of A, and let

QT (A A′) =

(︃
R B
0 C

)︃
,

where R ∈ R(n−k)×(n−k) is upper triangular, B ∈ R(n−k)×k and C ∈ Rm−(n−k)×k.
Suppose that there exists r ∈ Rm such that

(A A′)T r =

(︃
AT r

(A′)T r

)︃
= ω

(︃
0
1

)︃
(4.9)

with 0 = (0, . . . , 0)T ∈ R(n−k), 1 = (1, . . . , 1)T ∈ Rk, ω > 0, and consider the

solution

(︃
z
z′

)︃
of the least squares problem

min

⃦⃦⃦⃦
(A A′)

(︃
z
z′

)︃
− r

⃦⃦⃦⃦2
.

47

If the cosine matrix Θ associated to C is a strictly diagonally dominant matrix
with

γ = min
i

⎧⎨⎩1−
∑︂
j ̸=i

|θij |

⎫⎬⎭ >
1

2
, (4.10)

and we have ∥ci∥ ≤ τumaxj ∥cj∥ for every i, where τu is a parameter such that

1 ≥ τu >

√︃
3

2
− γ, (4.11)

then z′ > 0.

Proof. Applying the matrix QT by the left, we get

QT (A A′|r) =
(︃

R B s
0 C t

)︃
,

where s ∈ Rn−k and t ∈ Rm−(n−k). Then equation (4.9) rewrites(︃
0
w

)︃
= (A A′)

T
r = (A A′)

T
QQT r =

(︃
RT 0
BT CT

)︃(︃
s
t

)︃
=

(︃
RT s

BT s+ CT t

)︃
.

Since R is full rank, we have s = 0 and CT t = w > 0. On the other hand, we
have ⃦⃦⃦⃦

(A A′)

(︃
z
z′

)︃
− r

⃦⃦⃦⃦
=

⃦⃦⃦⃦(︃
R B
0 C

)︃(︃
z
z′

)︃
−
(︃

s
t

)︃⃦⃦⃦⃦
therefore the last s entries z′ of the solution of (6) satisfy z′ = argminx ∥Cx−t∥2,
i.e.

z′ = C†t = (CTC)−1CT t = (CTC)−1w = ω(CTC)−11. (4.12)

Now, we would like to apply Corollary 3 to CTC, in order to prove that its
inverse (CTC)−1 is strictly diagonally dominant with positive diagonal values.
This is enough to conclude that z′ > 0, since

z′i = ω

⎛⎝(CTC)−1
ii +

∑︂
j ̸=i

(CTC)−1
ij

⎞⎠ > ω

⎛⎝⃓⃓⃓⃓⃓⃓∑︂
j ̸=i

(CTC)−1
ij

⃓⃓⃓⃓
⃓⃓+∑︂

j ̸=i

(CTC)−1
ij

⎞⎠ ≥ 0.

Without loss of generality, suppose ∥c1∥ = maxi ∥ci∥. Then we have CTC =

∥c1∥2(I − S), where the matrix S = (sij) is given by

sij =

{︄
1− ∥ci∥2

∥c1∥2 , i = j,

− cT
i cj

∥c1∥2 , i ̸= j,

48

and

∥S∥∞ = max
i

⎧⎨⎩
⃓⃓⃓⃓
1− ∥ci∥

2

∥c1∥2

⃓⃓⃓⃓
+
∑︂
j ̸=i

⃓⃓
cTi cj

⃓⃓
∥c1∥2

⎫⎬⎭ .

Let us show that ∥S∥∞ < 1/2, which concludes the proof by Corollary 3. For
every i, we have

∥ci∥2

∥c1∥2
≥ τ2u

∥c1∥2

∥c1∥2
= τ2u ,⃓⃓

cTi cj
⃓⃓

∥c1∥2
≤

⃓⃓
cTi cj

⃓⃓
∥ci∥∥cj∥2

= |θij |,

and thus, since by assumption 1− τ2u ≥ 0 and τu >
√︁

(3− 2γ)/2, we have

∥S∥∞ ≤ 1− τ2u +max
i

∑︂
i ̸=j

|θij |

= 2− τ2u −min
i

⎛⎝1−
∑︂
i ̸=j

|θij |

⎞⎠
= 2− τ2u − γ

< 2−
(︃
3

2
− γ

)︃
− γ =

1

2
,

concluding the proof.

In order to ensure that the inverse of the matrix CTC is strictly diagonally
dominant with a positive diagonal, Lemma 6 introduces quite demanding thresh-
olds in Algorithm 5, namely τu and τθ, whose values should be picked near 1,
while it has not been possible to set the parameter τw to a value strictly smaller
than one, in fact the dual values (A′)T r are supposed all equal to ω > 0. Indeed,
it would have been possible if any bound on the gap of diagonal dominance of
the matrix (CTC)−1 were known, as shown in equation (4.12). However, as
we detail in the Section 4.1.4 and we experimentally show in Section 4.3, we
can relax these requirements without loosing the convergence of the method in
practice, i.e. these theoretical bounds describe a worst-case scenario.

Let us restate the following theorem, proved in [123] in the single column
case and here adapted to the multiple column case.

Theorem 4. Let (A A′) and r satisfy hypotheses of Lemma 6, that is (A A′)

has full rank, AT r = 0 and (A′)T r = w > 0. Consider the solution

(︃
z
z′

)︃
of

the least squares problem

min

⃦⃦⃦⃦
(A A′)

(︃
z
z′

)︃
− r

⃦⃦⃦⃦2
. (4.13)

49

and the solution

(︃
y
y′

)︃
of the least squares problem

min

⃦⃦⃦⃦
(A A′)

(︃
y
y′

)︃
− b

⃦⃦⃦⃦2
. (4.14)

If r is the projection of the right-hand side b on the nullspace of A, namely we
have r = PN (A)(b) = (I −AA†)b, then z′ = y′.

Proof. Consider the matrix (A A′)T (A A′) and apply block Gauss elimination
so that L (A A′)T (A A′) = U :(︃

(ATA)−1 0
−(A′)TAT† I

)︃(︃
ATA ATA′

(A′)TA (A′)TA′

)︃
=

(︃
I A†A′

0 (A′)T (I −AA†)A′

)︃
,

(4.15)

because (AA†)T = (AA†). Premultiplying by L normal equations for (4.13) we
get

(A′)T (I −AA†)A′z′ = w,

and for (4.14) we get

(A′)T (I −AA†)A′y′ = (A′)T (I −AA†)b = (A′)TPN (A)(b) = (A′)T r = w.

Thus the equality z′ = y′ holds provided that the matrix (A′)T (I − AA†)A′

is nonsingular. This follows from eq. (4.15), and from the fact that ATA is
nonsingular.

We can now prove the following result.

Theorem 5. Consider the NNLS problem

min ∥Ax− b∥22, s.t. x ≥ 0.

Given 1 > γ > 1
2 and kmax ≥ 1, Algorithm 5 terminates in a finite number of

steps, provided that

τw = 1, (4.16)

τθ ≤
1− γ

kmax − 1
, (4.17)

τu >

√︃
3

2
− γ. (4.18)

On termination, x will be a solution vector and w will be the dual vector.

Proof. Consider the least squares solution y(s+1) computed at step 13 of Algo-
rithm 5, that is y solves

y
(s+1)
P = argmin

y

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
y
(s+1)
Z = 0. (4.19)

50

where and Ps+1 = Ps ∪ Js and Zs+1 = Zs \ Js. The choices (4.16)–(4.18) allow

to apply Lemma 6 and Theorem 4, thus implying that y
(s+1)
i > 0 for i ∈ Js, and

hence, since x(s) ≥ 0, we have that s(s+1) := y(s+1)−x(s) is a feasible direction.

Said r(s) = b−Ax(s), let us define ẑ(s+1) as follows

ẑ(s+1) = argmin
z
(s+1)
Z =0

∥Az− r(s)∥ = argmin
z
(s+1)
Z =0

∥A(x(s) + z)− b∥, (4.20)

Notice that ẑ(s+1) can be obtained as

ẑ
(s+1)
P = argmin

z
∥A(s+1)

P z− r(s)∥, ẑ
(s+1)
Z = 0. (4.21)

Then we have

∥Aẑ(s+1) − r(s)∥ = ∥Aẑ(s+1) − (b−Ax(s))∥ = ∥A(ẑ(s+1) + x(s))− b∥
≥ ∥Ay(s+1) − b∥,

since ẑ(s+1) + x(s) vanishes on Zs+1 and the minimum is reached at y(s+1). On
the other hand

∥Ay(s+1) − b∥ = ∥Ay(s+1) −Ax(s) − b+Ax(s)∥
= ∥A(y(s+1) − x(s))− r(s)∥

≥ ∥Aẑ(s+1) − r(s)∥,

since y(s+1) − x(s) vanishes on Zs+1 and the minimum is reached at ẑ(s+1). As
a consequence of the uniqueness of such minimizers, we have

ẑ(s+1) = s(s+1) = y(s+1) − x(s). (4.22)

Consider the function

φ(ε) =
1

2

⃦⃦⃦
A
(︂
x(s) + εs(s+1)

)︂
− b

⃦⃦⃦2
.

We have

φ′(0) =
(︂
s(s+1)

)︂T
AT (Ax(s) − b) = −

(︂
s(s+1)

)︂T
w(s) = −

(︂
y(s+1)

)︂T
w(s)

=
∑︂
i∈Js

y
(s+1)
i

(︂
−w(s)

i

)︂
< 0,

(4.23)

since w
(s)
i > 0 for all i ∈ Js and y

(s+1)
i > 0 for all i ∈ Js. Therefore there exists

ε > 0 such that

ϕ
(︂
x(s) + εs(s+1)

)︂
=
⃦⃦⃦
A
(︂
x(s) + εs(s+1)

)︂
− b

⃦⃦⃦2
< ∥Ax(s) − b∥2 = ϕ

(︂
x(s)

)︂
,

51

where ϕ is the least squares objective function defined in (4.2). By definition
(4.20) and relation (4.22), we have

ϕ
(︂
x(s) + s(s+1)

)︂
≤ ϕ

(︂
x(s) + εs(s+1)

)︂
< ϕ

(︂
x(s)

)︂
. (4.24)

If y(s) is feasible, then we take ε = 1, i.e. x(s) = y(s), otherwise the algorithm
enters the inner loop and we choose a smaller step length ε = αs, more precisely
the largest possible to keep the new iterate within the feasible region. Using
Karush-Kuhn-Tucker conditions, it is easy to check that

ϕ
(︂
x(s) + αss

(s+1)
)︂
= min

ε>0

{︂
ϕ
(︂
x(s) + εs(s+1)

)︂
: x(s) + εs(s+1) ≥ 0

}︂
≤ ϕ

(︂
x(s)

)︂
.

(4.25)

The above inequality ensures that the objective function ϕ is always non increas-
ing, in particular within the inner loop iterations. The inner loops terminates
each time in at most ns−ks steps, where ns = |Ps| and ks = |Js|. Set s = s+1,
then

AT r(s) = AT
(︂
b−Ax(s)

)︂
= AT

(︂
b−A

(︂
x(s−1) + αs(s)

)︂)︂
= AT

(︂
b− (1− α)Ax(s−1) − αAy(s)

)︂
= (1− α)AT

(︂
b−Ax(s−1)

)︂
+ αAT

(︂
b−Ay(s)

)︂
= (1− α)AT r(s−1) + αAT

(︂
b−Ay(s)

)︂
and therefore, for i ∈ Js we have

aTi r
(s) = (1− α)aTi r

(s−1) + αaTi

(︂
b−Ay(s)

)︂
= (1− α)w

(s−1)
i > 0,

where the second term of the summation is zero because of normal equations
(y(s) is least squares solution). On the other hand, for all other indices j ̸∈ Js
that already were in the passive set we have

aTj r
(s) = (1− α)aTj r

(s−1) + αaTj

(︂
b−Ay(s)

)︂
= 0, (4.26)

where both terms vanishes because of normal equations. Hence r(s) satisfies

hypotheses of Lemma 6 and we have s
(s+1)
i > 0, for i ∈ J , where s(s+1) is the

solution of
min

s
(s+1)
Z =0

⃦⃦⃦
As− r(s)

⃦⃦⃦
.

Since s(s+1) = y(s+1) − x(s) (eq. (4.22)), we can conclude that

y
(s+1)
i > x

(s)
i ≥ 0, i ∈ Js (4.27)

52

meaning that at least the indices i ∈ Js are kept in the passive set at the end
of the inner loop.
From equation (4.24), we deduce that the objective function value ϕ

(︁
x(s+1)

)︁
is

strictly smaller every time step 16 is reached, hence the solution vector x(s+1)

and its associated set Ps+1 =
{︂
i : x

(s+1)
i > 0

}︂
are distinct from all previous

instances at the same step 16. Since Ps+1 is a subset of {1, . . . , n} and there are
only a finite number of such subsets, the outer loop must terminate after a finite
number of iterations, thus avoiding cycling at least in exact arithmetic. As a
consequence, the upper bound on the number of iteration needed for convergence
is 2n.
This is enough to conclude that Algorithm 5 terminates in a finite number of
steps and x(s),w(s), Ps, Zs satisfy KKT conditions (4.4)–(4.5) on termination.

Manipulating multiple columns at a time often allows cycling. This is
avoided provided that values for τθ, τu, τw are chosen in order to satisfy the

assumptions of Lemma 6 with (A A′) =
(︂
A

(s)
P A

(s)
J

)︂
. In fact, τθ, τu are taken

such that (4.10) and (4.11) are satisfied, and the choice τw = 1 ensures that(︂
A

(s)
P A

(s)
J

)︂T
r(s) = ω

(︃
0
1

)︃
,

with ω = argmaxw(s). At a first glance, the requirement τw = 1 may suggest
that only one column index at a time can be inserted to the passive set, but it
turns out that, especially in the first iterations, argmaxw(s) is not a singleton.
Lemma 6 and Theorem 4 allow to choose a feasible descent direction at each
iteration, ensuring that the objective function ϕ has a strictly smaller value
within the execution of the outer loop and, consequently, the finite convergence
of the algorithm.

4.1.4 The Lawson-Hanson algorithm with deviation max-
imization

In the previous section, we showed that a straightforward application of the
deviation maximization of column selection strategy into the Lawson-Hanson
algorithm introduces quite demanding values of thresholds τw, τθ, τu in order to
ensure finite convergence. Here, we show that these requirements can be relaxed
without loosing finite convergence, provided that a further inner loop is added
in order to ensure that a feasible descent direction is found at each outer loop
iteration. The resulting procedure, namely the Lawson-Hanson algorithm with
Deviation Maximization (LHDM), is presented in Algorithm 6, and it termi-
nates in a finite number of steps as shown in Theorem 6 below.
It is shown in Chapter 3 that when the daviation maximization is used for com-

puting a pivoted QR decomposition, even if the columns A
(s)
P already processed

are well conditioned, there could be a potentially dramatic increase in the con-

dition number of the next iterate A
(s+1)
P . This is a well known fact which has

53

Algorithm 6 Lawson-Hanson with Deviation Maximization (LHDM)

Inputs: A,b, τw, τu, τθ, kmax

Outputs: P ⋆, Z⋆,x⋆

1: P0 = ∅, Z0 = {1, . . . ,M}, x(0) = 0, w(0) = ATb, y(0) = 0, s = 0
2: while Zs ̸= ∅ and maxw(s) > 0 do
3: if ns > 0 then

4: A
(s)
P = Q(s)

(︃
R(s)

0

)︃
5:

(︁
Q(s)

)︁T
A

(s)
Z =

(︃
B(s)

C(s)

)︃
6: else
7: C(s) = A
8: end if
9: Js = DM(C(s),w(s)(ns + 1 :),u(s)(ns + 1 :), τw, τu, τθ, kmax)

10: move columns {ns + j1, . . . , ns + jks
} to the leading positions

{ns + 1, . . . , ns + ks} of A
11: Ps+1 = Ps ∪ Js
12: Zs+1 = Zs \ Js
13: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

14: while miny
(s)
J ≤ 0 do

15: delete the last element from Js
16: Ps+1 = Ps ∪ Js
17: Zs+1 = Zs \ Js
18: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

19: end while
20: while miny

(s+1)
P ≤ 0 do

21: s = s+ 1

22: Q = Ps ∩
{︂
i : y

(s)
i ≤ 0

}︂
23: α = mini∈Q x

(s−1)
i

(︂
x
(s−1)
i − y

(s)
i

)︂−1

24: x(s) = x(s−1) + α(y(s) − x(s−1))

25: Ps+1 = Ps \
{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
26: Zs+1 = Zs ∪

{︂
i : i ∈ Ps, x

(s)
i ≤ 0

}︂
27: y

(s+1)
P = argmin

⃦⃦⃦
A

(s+1)
P y − b

⃦⃦⃦
, y

(s+1)
Z = 0

28: end while
29: x

(s+1)
P = y

(s+1)
P , x

(s+1)
Z = 0

30: w(s+1) = AT
(︁
b−Ax(s+1)

)︁
31: s = s+ 1
32: end while
33: P ⋆ = Ps, Z

⋆ = Zs, x
⋆ = x(s)

54

been observed for other column selection strategies like the standard column
pivoting. A famous example is the Kahan matrix, however it is a very unlikely
occurrence in practice.
Let us now prove the main result of this chapter.

Theorem 6. Consider the NNLS problem

min ∥Ax− b∥22, s.t. x ≥ 0.

Given 1 > γ > 0 and kmax ≥ 1, Algorithm 6 terminates in a finite number of
steps, provided that

τw > 0, (4.28)

τθ ≤
1− γ

kmax − 1
, (4.29)

τu > 1− γ. (4.30)

On termination, x will be a solution vector and w will be the dual vector.

Proof. In order to avoid cycling and to ensure finite convergence of Algorithm 6,
we have to ensure

1. termination of the outer loop, by choosing a feasible direction s(s+1) such
that the strict inequality (4.25) still holds;

2. termination of the inner loop with a nonempty passive set.

Let us address the first task. The values chosen in (4.29)–(4.30) ensure that the

matrix A
(s+1)
P = (A

(s)
P A

(s)
J) has numerically linearly independent columns, as

it is shown in Theorem 2 of Chapter 3, where an approximation of the smallest
singular value is derived. Consider s(s+1) that solves the triangular linear system

R(s+1)s
(s+1)
P =

(︃(︂
Q

(s+1)
1

)︂T
r(s)
)︃(s)

, s
(s+1)
Z = 0,

where Q(s+1) R(s+1) is the QR decomposition of
(︂
A

(s)
P aj1 . . .ajks

)︂
. Since the

choices of τw, τu in (4.28) and (4.30) do not allow to apply Lemma 6, it does
not follow that s(s+1) is a feasible direction. If s(s+1) is not a feasible direction,

we drop the last column of A
(s)
J and the corresponding index jks

is moved back
to the active set Zs+1. We then look for the solution s(s+1) of the downdated
triangular linear system

R
(s+1)
1 s

(s+1)
P =

(︃(︂
Q

(s+1)
1

)︂T
r(s)
)︃(s)

, s
(s+1)
Z = 0, (4.31)

where Q
(s+1)
1 R

(s+1)
1 is the QR decomposition of

(︂
A

(s)
P aj1 . . .ajks−1

)︂
. Notice

that R
(s+1)
1 can be obtained by dropping the last row and the last column of

55

R(s+1), while Q
(s+1)
1 can be obtained as the product Q(s+1)G1, where GT

1 is an
orthogonal transformation that zeros out the last diagonal element of R(s+1),
e.g. a Givens transformation. We continue dropping a column at a time from

A
(s)
J until s(s+1) turns out to be a feasible solution and inequalities (4.23) and

(4.25) are satisfied. It should be noticed that this procedure terminates in at

most ks − 1 iterations, i.e. when only the first column of A
(s)
J is left. In this

case, the computed solution is equal to that provided by an outer iteration of
the standard Lawson-Hanson algorithm, thus s(s+1) is indeed a feasible descend
direction.
For what concerns the second task, once a feasible direction s(s+1) is found, then
the same arguments used in Theorem 5 can be used to show that (4.27) holds
for the indices in Js, thus ensuring the finite convergence of the inner loop with
a nonempty passive set.

In practice, instead of computing a tentative feasible direction (4.31), we
compute y(s+1) as the solution of

R
(s+1)
i y

(s+1)
P =

(︃(︂
Q

(s+1)
1

)︂T
b

)︃(s)

, y
(s+1)
Z = 0, i = 0, 1, . . . ,

until the last ks − i entries of y
(s+1)
P are positive.

In Section 4.3, we give experimental evidence of the significant performance gain
that this strategy can lead.

4.1.5 Implementation of Lawson-Hanson with deviation
maximization algorithm

In the previous sections we described the the state-of-the-art implementation
of the Lawson-Hanson Algorithm 4, pointing out that it does not involve mem-
ory communications. However, it does not lead to high performance since it is
mainly based upon BLAS-2 level operations. In the Lawson-Hanson with devi-
ation maximization Algorithm 6, both steps 13 and 27 require the solution of
an unconstrained least squares problem of type (4.8), solved e.g. by QR decom-
position, just like the standard algorithm. The deviation maximization block
pivoting allows to carry out step 13 with low-rank QR updates by means of the
so-called WY representation [124], which can be carried out by BLAS-3 level
operations. As a drawback, in order to exploit data locality in computations,
it is necessary to physically exchange the matrix columns in memory, thus in-
troducing memory communications. However, as shown in Section 4.3, it turns
out to be a better choice for performance. The QR downdates in step 27 are
carried out by means of Givens transformations, as in the implementation of
the Lawson-Hanson Algorithm 4.

56

4.2 Sparse recovery

In this section we present the problem of sparse recovery and its connections
with nonnegative least squares and with the deviation maximization technique.
Sparse recovery is a fundamental problem in compressed sensing, signal denois-
ing, statistical model selection and related fields, and it consists in finding the
sparsest solution to an underdetermined system of equations, see e.g. [69, 67].
There is a wide literature in the field of signal processing, in which a matrix
is usually referred as a dictionary and its columns are called atoms. Here, we
abandon this terminology in favour of the classical linear algebra one.

Given a vector x ∈ Rn, we define its support S = S(x) = {i : xi ̸= 0}. We
aim at identifying the solution x⋆ of the linear system Ax = b with the sparsest
support S⋆. Formally, we consider the optimization problem

min ∥x∥0, s.t. Ax = b. (4.32)

Recall the “ℓ0-norm” of a vector x is defined as

∥x∥0 = |S(x)| = |{i : xi ̸= 0}| ,

and it is not an actual norm because it does not hold that for any scalar s we
have ∥sx∥ = |s| ∥x∥. Actually, problem (4.32) is NP-hard, and in general we
seek an approximate solution. It is well known that we can solve instead the
so-called Basis Pursuit (BP) [44] problem

min ∥x∥1, s.t. Ax = b, (4.33)

which is a convex optimization problem, since ∥x∥1 is a convex function of x.
Indeed, the two problems yield the same solution provided it is sparse enough.
This result is known as ℓ0 − ℓ1 equivalence, and it has been found empirically
[46] and theoretically [68, 72].

4.2.1 Exact recovery

There are several conditions under which we have ℓ0 − ℓ1 equivalence, i.e. an
exact recovery. In the literature, these conditions are usually found by showing
the uniqueness of solution to problems (4.32) and (4.33) and their coincidence.
As a consequence of these results, efficient algorithms to solve (4.33) can be
used to find the sparsest solution to an underdetermined system of equations.

4.2.1.1 Uniqueness based on RIP

Let us recall the following definition.

Definition 3. Consider a matrix A ∈ Rm×n, and suppose that there exists
δs ∈ (0, 1) such that for every m × s submatrix As of A and for every y ∈ Rs

we have

(1− δs)∥y∥22 ≤ ∥Asy∥22 ≤ (1− δs)∥y∥22. (4.34)

57

We say that A has the s-order Restricted Isometry Property (RIP) with
constant δs.

For a given s, one is usually interested in the smallest constant δs for which
(4.34) holds, which is referred as the s-order restricted isometry constant.

A popular result [39] states that if δ2s < 1, then problem (4.32) has a unique
solution x with support size obeying ∥x∥0 ≤ s. Moreover, if δ2s <

√
2− 1, then

the solution to problem (4.33) also solves problem (4.32). However, the problem
of establishing whether a given matrix A fulfills the s-order RIP is NP-hard in
general [135].

4.2.1.2 Uniqueness based on ERC

Let us state the following result from [138].

Theorem 7. Consider a linear system Ax = b. If there exists a solution x̄
with support S̄ = S(x̄) such that

max
i ̸∈S̄

⃦⃦⃦
A†

S̄
ai

⃦⃦⃦
1
< 1, (4.35)

then x̄ is the unique solution to the minimum ℓ0 problem (4.32), which can be
recovered by solving the minimum ℓ1 problem (4.33).

We refer to (4.35) as Exact Recovery Condition (ERC). This provides
an easy sufficient optimality check for a given support S, but finding a support
S satisfying (4.35) is a combinatorial problem.

4.2.1.3 Uniqueness based on mutual coherence

Let us briefly introduce some definitions in order to help the reader to close the
gap between numerical linear algebra and compressed sensing. Let Θ = (θij) be
the cosine matrix associated to the matrix A, as introduced in (2.11). Please
note that θij is called the cross-correlation between the columns ai,aj in signal
processing.

Definition 4. The coherence or mutual coherence or two-sided coher-
ence of a matrix A is defined as

µ(A) = max
i<j
|θij |

(︃
= max

i>j
|θij |

)︃
. (4.36)

In [34], it is shown that if a solution x with ∥x∥0 ≤ s exists and

µ(A) <
1

2s− 1
(4.37)

then the solution x of problem (4.32) is unique. The condition above is easy to
verify for a given matrix A, however it is quite demanding.

58

4.2.2 Sparse recovery by nonnegative least squares

The nonnegativity constraint is known to naturally produce sparse solutions,
see e.g. [31, 76, 143, 144]. An important outcome of this body of work is
that nonnegativity alone may attain a satisfactory sparse recovery. Notice that
arbitrary signed sparse recovery is easily achievable. Given x ∈ Rn, decompose
it as x = x+ − x−, where x+ ≥ 0 and x− ≥ 0. Then the solutions of the linear
system Ax = b can be attained as the solutions of the nonnegative least squares
problem

min
x̄

⃦⃦
Āx̄− b

⃦⃦2
2
, x̃ ≤ 0, (4.38)

where x̄ =

(︃
x+

x−

)︃
∈ R2n and Ā = (A −A). This has been shown e.g. in [76]

and it is sometimes referred as “positivity trick”.

4.2.2.1 Uniqueness for NNLS problem

This topic has been treated in [31, 127, 76].

Definition 5. Given a matrix A ∈ Rm×n, we say that the columns of A are in
General Linear Position (GPL) if

AJy = 0 ⇒ y = 0,

for all y ∈ R|J|, with J ⊆ {1, . . . , n}, |J | ≤ min{m,n}.

When A is underdetermined, GPL means that A does not contain more linear
dependencies than it must have.

A nonnegative solution to the linear system Ax = b exists provided that b
is an element of the convex cone CA generated by A, namely

CA = {b ∈ Rm : b = Ax, x ≥ 0} . (4.39)

Suppose that CA has a nonempty interior C̊A. If b ∈ C̊A, then b does not
have a unique representation in terms of nonnegative linear combination of the
columns of A. therefore, in order to have a unique solution then b must lie
on the boundary of CA, ∂CA. A necessary condition for ∂CA ̸= ∅ is that CA is
pointed, i.e. CA∩C−A = {0}. A sufficient condition (also necessary under GLP)
for CA to be pointed is that A ∈M+, defined as

M+ =
{︁
A ∈ Rm×n : ∃ h ∈ Rm s.t. ATh = w > 0

}︁
. (4.40)

A necessary condition in order to have a unique solution to the NNLS problem
(4.1) is that A belongs toM+ [143, 125]. Moreover, in [125] it is shown that

A ∈M+ ⇔ 0 ̸∈ PA,

where PA is the convex hull generated by the columns of A, namely

PA =
{︁
x ∈ Rm : x = Aλ, λ ≥ 0, 1Tλ = 1

}︁
.

59

For a given A, we can verify if A ∈ M+ by solving the following least squares
problem with linear constraints

min ∥Aλ∥22, s.t. λ ≥ 0, 1Tλ = 1. (4.41)

To see this, let λ⋆ be a solution of the solution above. If the optimal value
attained is zero, namely ∥Aλ⋆∥22 = 0, then clearly 0 ∈ PA and A ∈M+; on the
other hand, if ∥Aλ⋆∥22 > 0 then 0 cannot belong to PA and we have A ̸∈ M+.
The uniqueness provided by (4.37) cannot be extended as it is to NNLS when the
solution vector is nonnegative. Clearly, if a nonnegative solution x of Ax = b
with ∥x∥0 ≤ s exists and

µ(A) <
1

2s− 1
, (4.42)

then it is the unique solution of minimum ℓ1-norm and it is also nonnegative,
however it may not be the unique nonnegative solution to this linear system
of equations. Thus, any NNLS solver has no guarantees to find the minimum
ℓ1-norm solution in general, while any ℓ1 solver does.

We can extend this result by adding the necessary condition (4.40).

Theorem 8. Consider a linear system Ax = b such that A ∈ M+. If there
exists a nonnegative solution x̄ with ∥x̄∥0 ≤ s and

µ(A) <
1

2s− 1
, (4.43)

then x̄ is the unique nonnegative solution and the minimum ℓ1-norm solution
to Ax = b.

Let us now consider the matrix Γ = (AD−2)TA = (ATAD−2)T whose entries
are given by

γij =
aTi aj
∥ai∥2

.

Definition 6. The one-sided coherence of a matrix A is defined as

ν(A) = max
i ̸=j
|γij |. (4.44)

The following results are from [31].

Lemma 7. For any matrix A, we have

ν(A) ≥ µ(A). (4.45)

Theorem 9. Consider a linear system Ax = b such that A ∈ M+. If there
exists a nonnegative solution x̄ with ∥x̄∥0 ≤ s and

ν(A) ≤ 1

2s− 1
, (4.46)

or equivalently s ≤ ν(A)+1
2ν(A) , then x̄ is the unique nonnegative solution to Ax = b.

60

Notice that even if we have uniqueness of the solution, we cannot ensure it
when we apply the positivity trick (4.38). To see it, suppose take a matrix A
that belong toM+, that is there exists h such that ATh = w > 0. We look for
h′ such that (A −A)Th′ = w′′ > 0, that is we look for w′ that solves{︄

ATh′ = w′ > 0,

−ATh′ = −w′ > 0.

Clearly, the linear system of inequalities above has no solution.

4.2.3 Sparsity enhancing methods and approximate mea-
surements

Let us now consider the more general situation in which the linear system does
not have to be exactly solved, i.e. we rather look for an approximate solution
satisfying Ax = b+ε, where ε is the vector containing the error in the measure-
ments. A famous method addressing this problem is the so-called LASSO [134].
Following Foucart and Koslicki [76], we address to the solution of the following
closely related problem

min ∥x∥21 + λ∥Ax− b∥22. (4.47)

As we already pointed out that no theoretical result states that NNLS solvers en-
sure sparse recovery. Problem (4.47) can be interpreted as a sparsity enhancing
or squared ℓ1-regularization method consisting in adding a penalization term to
the objective function. This problem can be thought as a weighted-sum form of
a multiobjective problem where the parameter λ controls the tradeoff between
the two objectives. This technique suffers from an evident drawback that is the
choice of λ, which is not explicitly related norm to the sparsity, nor to the linear
system.

In [76], problem (4.47) is recast as a nonnegative least squares problem. By

introducing x̄ =

(︃
x+

x−

)︃
∈ R2n and Ā = (A −A), problem (4.47) becomes

min

⃦⃦⃦⃦(︃
1 . . . 1
λĀ

)︃
x̄−

(︃
0
λb

)︃⃦⃦⃦⃦2
2

, s.t. x̄ ≥ 0 (4.48)

which will be referred as ℓ1-NNLS. A nice feature of this form is that the matrix
involved clearly belongs to M+ and uniqueness of the solution is possible for
any λ. The equivalence between problem (4.33) and problem (4.48) above can
be established for λ → ∞, meaning that the squared residual is much more
important then the ℓ1-norm, which becomes more and more vacuous as λ gets
larger. This suggests it could be sufficient to solve a simple NNLS problem in
order to get a sparse solution.

61

4.3 Comparison with existing algorithms

In this section, we compare LHDM with LH and other methods for sparse
recovery on a large set of instances. We provide nnls dm, a C implemen-
tation of LHDM, here used for numerical tests, freely available at https:

//github.com/mdessole/lhdm. In our tests, we compare nnls dm with nnls,
a C implementation of the Lawson-Hanson algorithm available at https://

software.sandia.gov/appspack/version3/nnls_8c-source.html. Further-
more, we compare LHDM with the other ℓ1 solvers tested in [102], whose im-
plementation is open source and available online. As done in [102], we used the
default setting for optional parameters of these solvers. Our purpose is not to
provide an exhaustive experimental comparison between the methods, which has
been done in the cited article, but instead to assess the substantial performance
gain attained by the deviation maximization to the Lawson-Hanson algorithm,
i.e. by the LHDM algorithm, and its competitiveness with the other methods
publicly available for sparse recovery. Actually, numerical experiments reveal
that LHDM is a good choice for sparse recovery, for a wide class of instances.

Numerical tests have been carried out on two different datasets. The first
dataset is freely available online and it has been created by Lorenz et al. [102]. It
contains many instances satisfying the ERC (4.35), thus representing a favorable
situation for compressed sensing in terms of recoverability of sparse solutions via
ℓ1 minimization. We also include instances not satisfying the ERC in order to
assess solvers’ performance outside the so-called ℓ0− ℓ1 equivalence. In our test
we have used 444 instances over 548, since we restrict our investigation to dense
matrices from this dataset. In fact, dealing with sparse matrices would require
a dedicated implementation of LHDM which can be addressed in the future. In
order to simplify the comparison with the results here presented with the ones
in [102], we keep the same indexing from 1 to 548 to show the results. Results
concerning sparse instances are left blank. The dimension of the instances here
considered ranges from hundreds to thousands rows and columns.
The second dataset is made of a few instances of a problem in multivariate
polynomial optimization, see [61, 62], in which a sparse nonnegative solution of
a Vandermonde-like linear system is sought. Further discussion on this topic,
together with a numerical package for its solution can be found in Appendix A.
In our tests, we have used 6 instances consisting of large linear systems whose
nonnegative solution is not unique and for which a solution satisfying the ERC
(4.35) is not known, thus representing difficult instances of the sparse recovery
problem. Note that the ℓ1 solvers here considered do not enforce nonnegativity
of the solution. The dimension of the instances here considered ranges from
hundreds to thousands rows and from thousands to millions of columns.

Figure 4.1 shows a general comparison between LHDM and each other
method here considered concerning execution times (figures on the right) and
residual error (figures on the left), for the instances of the first dataset. We used
the positivity trick presented in (4.38) in order to achieve an arbitrary signed
solution by means of LHDM, which succeeded in exact recovery for all tests
verifying the ERC, meaning that the solution with smallest support was found.

62

https://github.com/mdessole/lhdm
https://github.com/mdessole/lhdm
https://software.sandia.gov/appspack/version3/nnls_8c-source.html
https://software.sandia.gov/appspack/version3/nnls_8c-source.html

0 100 200 300 400 500

10 15

10 12

10 9

10 6

10 3

0 100 200 300 400 500
10 2

10 1

100

101

LHDM
l1-magic

0 100 200 300 400 500

10 14

10 10

10 6

10 2

102

0 100 200 300 400 500

10 2

10 1

100

LHDM
l1-homotopy

0 100 200 300 400 500

10 14

10 10

10 6

10 2

102

0 100 200 300 400 500
10 2

10 1

100

LHDM
SolveBP

0 100 200 300 400 500

10 15

10 12

10 9

10 6

10 3

0 100 200 300 400 500

10 2

10 1

100

101

LHDM
SPGL1

0 100 200 300 400 500
10 17

10 15

10 13

10 11

10 9

10 7

10 5

0 100 200 300 400 500
10 2

10 1

100

101

102

LHDM
ISAL1

Figure 4.1: Performance of LHDM versus the five methods tested on the first
dataset.

63

Table 4.1 shows the comparison between methods in terms of execution times
and solution quality, for the instances of the second dataset. For each test and
for each method, we list the residual of the solution found (∥Ax−b∥2), execution
times in seconds (time (s)) and the cardinality of the support of the solution
found (∥x∥0). Experiments in which an error occurred or whose execution times
took more than 10 minutes are labeled by −. Notice that ℓ1 solvers look for
the minimum ℓ1 solution of arbitrary sign, while LH and LHDM look for a
nonnegative solution. As already pointed out, the nonnegative solutions to
these linear systems is not unique and it is not known a solution satisfying any
of the criteria presented in Section 4.2.1. Thus these instances present further
difficulties.

Chebyshev n = 6, d = 3 ∥Ax− b∥2 time (s) ∥x∥0 Halton n = 5, d = 4 ∥Ax− b∥2 time (s) ∥x∥0
l1-magic − − − l1-magic 3.548e-13 8.050 10000
l1-homotopy 2.047e-03 19.006 405 l1-homotopy 1.831e-03 3.924 670
SolveBP 4.045e-07 3.592 110592 SolveBP 1.566e-07 0.943 10000
SPGL1 9.052e-05 5.869 100292 SPGL1 9.646e-05 0.673 9580
ISAL1 − − − ISAL1 2.575e-07 39.387 10000
LH 3.062e-05 59.331 324 LH 1.405e-05 23.796 879
LHDM 2.909e-05 13.023 326 LHDM 8.745e-06 2.441 915

Chebyshev n = 3, d = 4 ∥Ax− b∥2 time (s) ∥x∥0 Chebyshev n = 2, d = 5 ∥Ax− b∥2 time (s) ∥x∥0
l1-magic − − − l1-magic − − −
l1-homotopy 2.707e-03 10.520 106 l1-homotopy 2.466e-03 3.678 31
SolveBP 3.742e-07 4.793 331776 SolveBP 2.384e-07 9.457 1048576
SPGL1 9.993e-05 11.816 2784 SPGL1 9.315e-05 12.184 32302
ISAL1 − − − ISAL1 − − −
LH 1.734e-05 52.704 149 LH 2.111e-05 78.857 79
LHDM 1.534e-05 18.113 159 LHDM 1.653e-05 38.214 90

Multibubble n = 10, d = 3 ∥Ax− b∥2 time (s) ∥x∥0 Halton n = 2, d = 10 ∥Ax− b∥2 time (s) ∥x∥0
l1-magic 1.196e-13 19.188 18915 l1-magic 8.782e-13 7.852 10000
l1-homotopy 2.057e-03 38.676 1452 l1-homotopy 1.420e-03 2.343 510
SolveBP 2.095e-07 3.023 18915 SolveBP 1.833e-07 0.793 10000
SPGL1 1.170e-05 1.192 18915 SPGL1 5.598e-05 0.543 1540
ISAL1 5.322e-17 109.900 18915 ISAL1 4.008e-07 12.989 10000
LH 8.536e-05 115.116 1393 LH 1.056e-05 21.375 817
LHDM 7.203e-05 9.526 1432 LHDM 7.491e-06 2.070 891

Table 4.1: Results of LHDM versus the five methods tested on the second
dataset.

For both datasets, we used a fixed choice of the thresholds used in LHDM,
that is τw = 0.5, τθ = 0.3, τu = 0.1 and kmax = 32, hence giving evidence of
the robustness of the method proposed without the need of choosing problem
dependent parameters. The values we adopted gave the best overall execution
times and were tuned on the first dataset only.

Figure 4.2 and Figure 4.3 summarize the role of kmax on the execution times.
In Figure 4.2, it is shown the speedup of LHDM with respect to LH: the figure
clearly highlights the performance gain produced by the deviation maximization,
which turns out to be fundamental in order to make Lawson-Hanson algorithm
competitive against to other methods for sparse recovery. For example, when a
larger kmax is chosen the time to solution generally decreases, but we observe
that the deviation maximization may struggle to find a large set of indices to
add to the passive set, as shown by the figure on the left in which we see the
evolution of the cardinality of the passive set for kmax = 8, 16, 32. The figures
below show that the larger the value of kmax is, the larger the average increase

64

of the cardinality of the passive set is, as we might expect. In most cases, a
larger kmax leads to reach the solution in a smaller number of iteration (cf. test
case 512 (right) of the first dataset shown in Figure 4.3 on the right); however,
it may cause the algorithm to convergence in a larger number of iterations,
hence with larger execution times, to a solution whose support is larger than
the optimal one (cf. test case 500 of the first dataset shown in Figure 4.3 on
the left). A preliminary investigation led kmax = 32 to be our default choice,
although it could be interesting to devise an adaptive strategy for the choice of
kmax. This is far from trivial and out of scope of the current work. We rather
apply the strategy implemented in Algorithm 6 that allows to set a large kmax,
which can be chosen by considering only memory usage and computational cost
of deviation maximization.

0 100 200 300 400 500
0

2

4

6

8

10

k_max=8
k_max=32

0 100 200 300 400 500
0

2

4

6

8

10

k_max=16
k_max=32

Figure 4.2: Speedup of LHDM over LH for different values of kmax.

0 5 10 15
0

10

20

30

40

50

0 5 10 15 20 25
0

50

100

150

k_max=8
k_max=16
k_max=32

Figure 4.3: Evolution of the cardinality of the passive set during the execution
of LHDM for different values of kmax.

65

4.4 Conclusions and future perspectives

In this chapter we have presented a new NNLS solver, namely the Lawson-
Hanson with deviation maximization algorithm. This method relies on cor-
relation analysis by means of cosine evaluation in order to select a subset of
sufficiently linearly independent descent directions and we have used it as col-
umn pivoting strategy to devise a new active set method. We have provided a
theoretical analysis proving the finite convergence of LHDM, which is shown to
terminate in at most 2n steps, just like the standard Lawson-Hanson. This is a
worst case bound, and in practice a polynomial rate of convergence is observed.

This chapter comes together with nnls dm, an open source C implementation
of LHDM, available online at https://github.com/mdessole/lhdm. Extensive
numerical experiments have been carried out over a wide set of instances, con-
firming that LHDM yields a significant performance gain over LH with an aver-
age speedup of 3× with peaks up to 10×. Moreover, we compared LHDM with
several ℓ1 solvers whose implementation is publicly available online. Numerical
testing has confirmed that LHDM is competitive with ℓ1 solvers for sparse re-
covery in terms of solution quality and execution times, revealing that LHDM
is a good choice for sparse recovery for a wide class of instances.

We did not cope with sparse instances, since it would require a dedicated
implementation based on sparse QR with column pivoting. Finally, it would
be interesting to extend the deviation maximization as pivoting strategy to
other problems which require column selection, e.g. more general constrained
optimization problems such as least squares problems with linear inequality
constraints.

66

https://github.com/mdessole/lhdm

Part II

Parallel computing for
sparse numerical linear

algebra

67

Chapter 5

Solution of BABD systems

In this chapter we discuss numerical methods to solve Bordered Almost Block
Diagonal (BABD) systems on a massively parallel architecture like a GPU. Such
systems arise in a variety of computational problems: the solution of boundary
value ordinary differential equations (BVODEs), Markov chains modeling [98],
parameter estimation with non-linear DAE models [23], optimal control [16] and
many others. For a survey of serial and parallel algorithms see [4] and [73].

The most occurring BABD matrices have the following structure⎛⎜⎜⎜⎜⎜⎝
S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

⎞⎟⎟⎟⎟⎟⎠ , (5.1)

where Ba, Bb, Si, Ti, i = 0, . . . , N−1 are square blocks all of the same size n×n.
A special case of BABD matrices are Almost Block Diagonal (ABD) matrices,
which typically have the following structure⎛⎜⎜⎜⎜⎜⎜⎜⎝

Da

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Db

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.2)

where Da, Db are rectangular blocks of size q × n and (n− q)× n respectively,
with 0 < q < n.

As an example, such matrices mainly arise in the numerical solution of
Boundary Value problems for Ordinary Differential Equations (BVODEs)

y′ = f(x, y(x)), y, f ∈ Rn, x ∈ [a, b] (5.3)

g(y(a), y(b)) = 0, g ∈ Rn. (5.4)

68

where numerical methods like finite differences, multiple shooting or orthogonal
spline collocation are implemented using a linearization, which is evaluated on
a domain discretization of type a = x0 < x1 < · · · < xN = b, and lead to a
sequence of a BABD or ABD linear systems.

When the boundary conditions (equation (5.4)) can be rewritten, possibly
by a permutation, in the form

g(y(a), y(b)) =

(︃
ga(y(a))
gb(y(b))

)︃
, ga ∈ Rq, gb ∈ Rn−q, (5.5)

we say that the problem shows separated boundary conditions, and it yields
ABD matrices, otherwise we speak of nonseparated boundary conditions, which
give BABD matrices. In the literature, Wright [145] showed that Gaussian
elimination with no pivoting or row partial pivoting is potentially unstable on
BABD matrices and can lead to overflow. It can be observed e.g. with matrices
arising from the minimum lap-time simulator problem [16], if the pivoting is
restricted to each row block (in order to reduce fill-in in the triangular factors).
If, on the other hand, one allows partial pivoting to the whole matrix, then blow
up is avoided at cost of a dense LU decomposition.

Between the 1980s and the 1990s, the special ABD and BABD structures
have been exploited in a number of algorithms to minimize fill-in and computa-
tional cost without compromising stability, see [4]. Naive approaches consider
ABD systems as banded block tridiagonal systems. Such approaches are un-
desirable for many reason, not last the introduction of fill-in in the solution
procedure, leading to significant inefficiencies. We propose a new algorithm
tailored for massively parallel architectures, which ensures a better work-steps
balance and remarkable memory savings.

5.1 Existing direct solvers for ABD and BABD
systems

The scope of this section is to briefly review the algorithms seen in [4] and con-
sider them working on massively parallel architectures such as GPUs. Further-
more we introduce a new algorithm well suited for massive parallel computing
hardware, that we call PARASOF.

In general, direct sequential solvers for ABD/BABD systems rely on the
classical Gaussian elimination scheme (with different kinds of pivoting), which
results in limited opportunity for parallelism when handling banded systems [77,
Sec. 5.1]. This limitation becomes more pronounced the narrower the system’s
bandwidth is. For this reason we focus on specific algorithms for direct parallel
ABD/BABD solvers. For what concerns in particular BABD solvers, Wright
[145] showed that Gaussian elimination with row interchanges can be unsta-
ble. Amodio et al. [4] state that there exists no dedicated sequential solver to
their knowledge, and they proposed some alternative approaches based on the
available software at the time. As an option, an alternative guaranteed stable

69

approach is to write the BABD system as an ABD system of twice the size by
introducing dummy variables to separate boundary conditions. For what con-
cerns parallel solvers, a robust and accurate method for BABD systems involves
the reduction of the coefficient matrix into a sparse upper triangular matrix us-
ing a structured orthogonal factorization (SOF or SQR) as described in [146].
More recent approaches [3] combine cyclic reduction and the methods of the
survey, and they are more suited for multi-core architectures, such as processors
with up to 8 or 16 cores. Other existing approaches in the literature rely upon
domain decomposition, but they apply to hybrid direct-iterative algorithms and
therefore are not considered in this work. For example, the “tearing” method
of Gallopoulos [77] is interesting but it cannot be reduced to a pure direct al-
gorithm. Summing up, for both BABD and ABD systems the most efficient
direct algorithms are based on divide-and-conquer approaches. To the best of
our knowledge, none of these methods has been tailored for GPU platforms,
which have thousands of small cores. In order to attain high performance on
many-cores platforms such, we propose substantial modifications.

The parallel algorithms reviewed in [4] can be implemented efficiently to
exploit medium granularity parallelism, that is the number of processors is much
smaller than the number N of block rows (or columns) of the matrix. The same
matrix decomposition is locally applied to properly chosen submatrices, leading
to subproblems of smaller size and preserving the ABD/BABD block structure.
In the following subsections we present the main features of one of these solvers,
namely SOF, for BABD systems. Then, in the following section, we propose a
novel version of SOF algorithm inspired by parallel cyclic reduction (PARACR)
[92] and designed to get more parallelism and less sequential steps on many-core
architectures. Such a technique can be straightforwardly extended to parallel
algorithms for ABD systems.

5.1.1 Structured Orthogonal Factorization

Consider a generic BABD system

⎛⎜⎜⎜⎜⎜⎝
S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

...
xN−1

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1

b2

...
bN−1

bN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.6)

where the matrix has the same structure as in (5.1), the right-hand side and the
solution satisfy bi,xi ∈ Rn, for i = 0, . . . , N . Let us consider a partition of the
block rows of the system above into P slices, leaving out of the last block row
related to boundary conditions. Such partition can be described by an integer
1 ≤ P ≤ N/2, and a set of separator indices

0 = k0 < k1 < · · · < kP = N, kp+1 − kp ≥ 2, p = 0, . . . , P − 1.

70

In the Structured Orthogonal Factorization (SOF), proposed in [146] and re-
viewed in [4], QR decomposition is locally applied in order to independently
factorize each submatrix, corresponding to a slice. We detail the process for the
p-th slice with rp = kp+1 − kp block rows, augmented with its right-hand side,
that becomes⎛⎜⎜⎜⎝

Skp Tkp bkp

Skp+1 Tkp+1 bkp+1

. . .
. . .

...
Skp+1−1 Tkp+1−1 bkp+1−1

⎞⎟⎟⎟⎠ . (5.7)

First find an orthogonal matrix Qkp
∈ R2n×2n such that(︃

Tkp

Skp+1

)︃
= Qkp

(︃
Ukp

0

)︃
, (5.8)

where Ukp
∈ Rn×n is upper triangular. If we apply the matrix QT

kp
to the first

two block rows of (5.7), that is we compute⎛⎜⎜⎜⎜⎜⎜⎝
QT

kp

I(rp−2)n

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
Skp Tkp bkp

Skp+1 Tkp+1 bkp+1

Skp+2 Tkp+2 bkp+1

. . .
. . .

...
Skp+1−1 Tkp+1−1 bkp+1−1

⎞⎟⎟⎟⎟⎟⎠
(5.9)

we obtain⎛⎜⎜⎜⎜⎜⎝
Vkp

Ukp
Wkp

fkp

V kp+1 W kp+1 fkp+1

Skp+2 Tkp+2 bkp+2

. . .
. . .

...
Skp+1−1 Tkp+1−1 bkp+1−1

⎞⎟⎟⎟⎟⎟⎠ . (5.10)

Then find an orthogonal matrix Qkp+1 ∈ R2n×2n such that(︃
W kp+1

Skp+2

)︃
= Qkp+1

(︃
Ukp+1

0

)︃
,

where Ukp+1 ∈ Rn×n is upper triangular, and apply QT
kp+1 to block rows 1, 2

of (5.10). This process can be repeated sequentially for rp − 1 steps, until we
obtain an equivalent system⎛⎜⎜⎜⎜⎜⎝

Vkp
Ukp

Wkp

Vkp+1 Ukp+1 Wkp+1

...
. . .

. . .

Vkp+1−2 Ukp+1−2 Wkp+1−2

S′
p T ′

p

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
xkp

xkp+1

...
xkp+1−1

xkp+1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
fkp

fkp+1

...
fkp+1−1

b′
p

⎞⎟⎟⎟⎟⎟⎠ ,

(5.11)

71

Notice that the system (5.7) has been split as

S′
pxkp

+ T ′
pxkp+1

= b′
p (5.12)

Ui−1xi + Vi−1xkp +Wi−1xi+1 = fi−1, i = kp+1 − 1, . . . , kp + 1. (5.13)

Notice that, after solving equations (5.12), the remaining variables can be re-
covered by back-substitution by solving the triangular systems (5.13) (Ui blocks
are upper-triangular). Putting together equations (5.12), a reduced system can
be formed⎛⎜⎜⎜⎜⎜⎝

S′
0 T ′

0

S′
1 T ′

1

. . .
. . .

S′
N ′−1 T ′

N ′−1

Ba Bb

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
xk0

xk1

...
xkN′−1

xk′
N

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
b′
0

b′
1
...

b′
N ′−1

bN

⎞⎟⎟⎟⎟⎟⎠ , (5.14)

which is a BABD system with only N ′ = P internal block rows. This immedi-
ately suggests that it may be possible to apply the whole process recursively for
a certain number L > 1 of levels, until a sufficiently small system is achieved
and then directly solved. The missing variables can then be recovered by L
levels of back-substitution, leading to a total number of 2L+1 sequential steps.

From now on we assume, like in [4], that each slice is assigned to a processor,
in such a way that all slices can be reduced in parallel. However, the p-th slice
needs rp − 1 sequential QR decompositions. The following Proposition states
the structure of the corresponding matrix decomposition.

Proposition 1. Consider the BABD system (5.6), and define Π,Γ as the per-
mutation matrices of order n(N + 1) corresponding to the following block re-
orderings

Π
(︁
(xT

0 , . . . ,x
T
N)T

)︁
= (xT

k0
, . . . ,xT

k1−2,x
T
k1
, . . . ,xT

k2−2,x
T
k2+1, . . . ,x

T
kP−2,x

T
k1−1, . . . ,x

T
kP−1,x

T
kP

)T ,

Γ
(︁
(xT

0 , . . . ,x
T
N)T

)︁
= (xT

k0+1, . . . ,x
T
k1−1,x

T
k1+1, . . . ,x

T
k2−1,x

T
k2+1, . . . ,x

T
kP−1,x

T
k0
, . . . ,xT

kP
)T ,

(5.15)

for any vector x = (xT
0 , . . . ,x

T
N)T ∈ Rn(N+1). The SOF algorithm yields the

following decomposition

A = QΠTDΓ, (5.16)

where D is a block upper triangular matrix with, where the last diagonal block
has a BABD structure, while Q in an n(N + 1)× n(N + 1) orthogonal matrix,
which is the (commutative) product of P orthogonal matrices

Q = Q0 · · · QP−1, (5.17)

where Qp, p = 0, . . . , P − 1, is given by

Qp =

⎛⎝ I(k−2)n

Qp

I(k−2)n

⎞⎠ ,

72

and Qp is given (non-commutative) product of rp−1 orthogonal matrices of size
rpn× rpn

Qp =

⎛⎝ I(rp−2)n

QT
kp+1−2

⎞⎠ · · ·
⎛⎝ In

QT
kp+1

I(rp−3)n

⎞⎠⎛⎝ QT
kp

I(rp−2)n

⎞⎠ .

(5.18)

Proof. Looking at equation (5.9) and considering the following discussion, it is
clear that we apply an orthogonal transformation in the form (5.18) on each
slice in order to obtain the reduced slice (5.11). The product (5.18) is clearly
non-commutative due to the sequentiality of the process. The product (5.17) of
the “enlarged” Qp matrices to the size Nn×Nn is commutative since the slices
are non-overlapping.

By stacking together the reduced slices (5.11), for 0 ≤ p ≤ P − 1, we obtain
the following equivalent system

QT [A|b] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0 U0 W0 f0
...

. . .
...

S′
0 T ′

0 b′
0

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...
S′
P−1 T ′

P−1 b′
N ′−1

Ba Bb bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.19)

Applying the permutation matrix Π to matrix QTA from the left, we move all
equations in the form (5.12) to the bottom, obtaining⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0 U0 W0 f0
...

. . .
...

Vk1−2 Uk1−2 Wk1−2 fk1−2

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...
VkP−2 UkP−2 fkP−2

S′
0 T ′

0 b′
0

.S′
P−1 T ′

P−1 b′
N ′−1

Ba Bb bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and finally, by applying the permutation matrix ΓT to matrix QTA from the
right, we move to the left the columns corresponding to the reduced system,

73

and the matrix

(︃
U V f

A′ b′

)︃
can be block partitioned as follows

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 W0 V0 f0
. . .

...
...

Uk1−2 Vk1−2 Wk1−2 fk1−2

. . .
. . .

...
UkP−1

WkP−1
VkP−1

fkP−1

. . .
...

...
UkP−2 VkP−2 WkP−2 fkP−2

S′
0 T ′

0 b′
0

. . .
...

S′
P−1 T ′

P−1 b′
N ′−1

Ba Bb bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where U is an upper triangular matrix with a block diagonal structure, and A′ is
the reduced BABD matrix (5.14). The matrix above is the matrix D we where
looking for, and this proves relation (5.16).

5.1.2 Data dependency analysis of SOF

For the SOF algorithm, presented in the previous subsection, the number of
levels L and the number of slices P can be tuned according to the resources of the
physical machine, making this algorithm particularly suited to be implemented
on very different hardware environments: a natural choice is to take P equal to
the number of available “processors”, that can be meant as physical processors
or parallel threads, depending on the computing system adopted. There is an
obvious trade-off between the choice of L and P : if we choose a small number P
of slices (and processors), it will turn into a little fraction of parallel work during
the factorization, leading however to a small reduced system which can be solved
with fewer sequential recursion steps L; on the other hand, if we choose a large
number P of slices, the fraction of parallel work will be higher, but the resulting
reduced system will require a longer sequence of further reduction steps to be
solved.

Wright [146] proposed three variations of SOF algorithm: a sequential ver-
sion, in which P = 1 and L = 1, so that there’s only one slice to process; a
two-level version, in which P > 1 and L = 1, so that P processors are used for
blocks factorization, reduction and back substitution, but the reduced system is
solved sequentially; a “cyclic reduction” version: suppose for the moment that
N = P = 2L, then the factorization and reduction phase can be performed on
slices of two block rows each for L = log2(P) + 1 levels, until a 2× 2 block sys-
tem is achieved, then the back-substitution is performed for L steps. The author
stated this last version is optimal with regard to complexity: the execution time
is O(2 log2 P) on P processors, while the serial time is O(2P log2 P). However,

74

at each level of the reduction phase, only half the processors active at the pre-
vious level is needed, with an overall tremendous waste of resources, especially
for massively parallel architectures. If N > P , then the BABD matrix A is
partitioned into P slices of about N/P block rows each, and the factorization
and reduction phase is applied to obtain a reduced system with N ′ +1 = P +1
block rows. The cyclic reduction version of SOF is then used to solve the reduced
system, and, finally, the missing unknowns are retrieved by back substitution.
From now on we will only refer to this last version of SOF, whose pseudocode
is presented in Algorithm 7.

Algorithm 7 Structured Orthogonal Factorization (SOF)

Inputs: A,b, P
Outputs: x

1: if N > P then
2: Divide A into P slices of roughly N

P block rows each
3: Reduce the p-th slice to one block equation on the p-th processor, p =

0, . . . , P
4: end if
5: L = log2(P) + 1
6: for l = 1, . . . , L do
7: Assign block equations 2p, 2(p+1) to p-th processor, p = 0, . . . , N/2l−1
8: Reduce the p-th pair to one block equation on the p-th processor, p =

0, . . . , N/2l − 1
9: end for

10: Solve a 2× 2 block system
11: for l = 1, . . . , L do
12: Retrieve block unknown p N

2l−1 + N
2l

of the reduced system with p-th

processor, p = 0, . . . , 2l−1,
13: end for
14: if N > P then
15: for k = N

P − 1, . . . , 1 do

16: Retrieve block unknown pN
P +k with the p-th processor, p = 0, . . . , P

17: end for
18: end if

Figure 5.1 shows the communication pattern for SOF algorithm in the case
N = 8. Each block equation

Sixi + Ti+1xi+1 = bi,

is labeled by ei, i = 0, . . . , N − 1, while the block equations related to bound-
ary conditions Bax0 + BbxN = bN is labeled by eN . Letters e′, e′′, e′′′ stand
for updated equation at level L = 1, 2, 3 respectively. The workflow highlights
an inside feature of SOF: during the forward reduction phase, the parallelism
available is halved at each level, forming a serial bottleneck. Although these

75

e8e7e6e5e4e3e2e1e0 Step 1. Forward reduction to 5n
unknowns

e8e′7e′5e′3e′1 Step 2. Forward reduction to 3n
unknowns

e8e′′7e′′3 Step 3. Forward reduction to 2n
unknowns

e8e′′′7 Step 4. Solve 2n × 2n system

x8 e′′′3x0 Step 5. Back-substitution to re-
trieve the rest n unknowns

x8e′′2x4e′′0x0 Step 6. Back-substitution to re-
trieve the rest 2n unknowns

x8e′6x6e′4x4e′2x2e′0x0 Step 7. Back-substitution to re-
trieve the rest 4n unknowns

x8x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

TI
A

L

Figure 5.1: Data dependency DAG for SOF in the case N = 8 (9n unknowns)
with P = 4 slices (and processors) of k = 2 block rows each, showing the
dataflow between each block equation.

algorithms enjoy a medium-grained parallel structure, since the same procedure
- the QR decomposition and the back-substitution - must be applied to sev-
eral blocks concurrently, the amount of parallel work is not constant among the
levels, and it is particularly poor at the end of the forward phase and at the
beginning of the back-substitution phase. These algorithms clearly suffer from
irregular work distribution within each level, so that some processor is forced
to stay idle in the most part of the algorithm levels. A straightforward imple-
mentation would lead to an amount of parallelism too poor to fully exploit the
computing power of many-core architectures such as the GPUs. For this reason
we propose and discuss in the following section a different scheme of divide-et-
impera, more suited for massive parallel architectures, where P is significantly
large.

5.2 Solving BABD systems on GPUs

In this section we propose a different scheme of divide-et-impera that gives a
high fraction of parallelism at each algorithmic step. At each level, the method
doubles the number of subproblems of half the size by separating odd from even
unknowns, until at the last level of reduction the solution for all variables is
found in parallel and the back-substitution phase is not required. As we will
see in the experiments, the massive parallelism of this algorithm outperforms
the existing algorithms, in spite of a considerable arithmetic redundancy. In the
literature, a similar approach has been first exploited in PARACR [92], a parallel
algorithm for solving tridiagonal systems that is not directly applicable to ABD
and even less to BABD systems. Following the material at Section 5.1.1, in this
section we present a direct massively parallel algorithm for BABD systems. Such

76

a technique can be extended to ABD systems, with some minor modifications.
Section 5.3 will be devoted to numerical tests and computation times assessment.

Suppose N + 1, i.e. the total number of block rows (or columns) of system
(5.6), is even. Then the system can be partitioned into P = (N + 1)/2 slices
with two block rows each, that is the maximum parallelism attainable in SOF.
Let us point out that we include in the partition also the last block row, which
is relative to the boundary conditions, that in SOF was excluded. This is
necessary, together with the choice of slices of length two, in order to fully
decouple even and odd variables, in such a way that all variables can be recovered
at the end of the forward phase without the need of back-substitution. For this
reason, we refer to this method as “odd/even SOF”. Let us consider two different
staggered partitions into slices of the system (5.6) and apply SOF to each of
them. For the first partition, called even partition from now on, we choose
P = (N + 1)/2 and the following set of separator indices

kep = 2p, p = 0, . . . , P − 1 = (N + 1)/2− 1.

From (5.9) and (5.12), since the dimension of the slices is fixed to rp = kep+1 −
kep = 2 for all p, we get

QT
e

⎛⎜⎜⎜⎜⎜⎝
S0 T0 b0

S1 T1 b1

. . .
...

SN−1 TN−1 bN−1

Ba Bb bN

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
V e
0 Ue

0 W e
0 fe0

Se
0 T e

0 be
0

. . .
...

W e
N−1 V e

N−1 Ue
N−1 feN−1

Be
a Be

b be
N ′

⎞⎟⎟⎟⎟⎟⎠ ,

(5.20)

where Qe ∈ R(N+1)n×(N+1)n is orthogonal and the reduced system, that shows
a BABD structure with N ′ = P − 1 internal blocks, involves only even block
unknowns x0,x2, . . . ,xN−1. The corresponding reduced system can be achieved,
as in the SOF case, by selecting the last block row of each updated slice, i.e.
block rows with odd index, and block columns with even index; for each slice, a
QR decomposition of type (5.8) is performed, and the reduced right-hand side
thus obtained is (be

0
T , . . . ,be

N ′
T)T . For the second partition, namely the odd

partition, we choose again P = (N + 1)/2, and the following set of separator
indices

kop = 2p+ 1, p = 0, . . . , P − 1 = (N + 1)/2− 1.

We consider to join the first and the last block rows into the same slice, thus

77

obtaining

QT
o

⎛⎜⎜⎜⎜⎜⎝
Ba Bb bN

S0 T0 b0

. . .
...

SN−2 TN−2 bN−2

SN−1 TN−1 bN−1

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
Uo
N W o

N V o
N foN

Bo
a Bo

b bo
N ′

. . .
...

W o
N−2 Uo

N−2 V o
N−2 fo0

T o
N ′−1 So

N ′−1 bo
N ′−1

⎞⎟⎟⎟⎟⎟⎠ ,

(5.21)

where Qo ∈ R(N+1)n×(N+1)n is orthogonal and the reduced system, that shows
a BABD structure with N ′ = P internal blocks as in the even case, involves
only odd unknowns x1,x3, . . . ,xN . The corresponding reduced system con-
sists of block rows and columns with odd index, provided that the first block
row has been moved as above; in this case, the reduced right-hand side is
(bo

0
T , . . . ,bo

N ′
T)T .

Notice that these two decompositions, even and odd, are completely indepen-
dent and can therefore be performed in parallel, provided that N +1 processors
are available. The resulting reduced systems are BABD systems of half the size⎛⎜⎜⎜⎜⎜⎝

Se
0 T e

0

Se
1 T e

1

. . .
. . .

Se
N ′−1 T e

N ′−1

Be
a Be

b

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
x0

x2

...
xN−3

xN−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
be
0

be
1
...

be
N ′−1

be
N ′

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
So
0 T o

0

So
1 T o

1

. . .
. . .

So
N ′−1 T o

N ′−1

Bo
a Bo

b

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
x1

x3

...
xN−2

xN

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
bo
0

bo
1
...

bo
N ′−1

bo
N ′

⎞⎟⎟⎟⎟⎟⎠ .

(5.22)

If N + 1 = 2L for some L ∈ N \ {0}, we can apply recursively this technique
to the reduced systems, and, after L−1 steps, we end up with exactly (N+1)/2
block systems of size 2×2 in the unknowns xi,x(N+1)/2+i, with i = 0, . . . , (N −
1)/2, which can be solved directly. The odd/even SOF clearly has the same
stability properties as SOF. The following Proposition clarifies the structure of
the matrix decomposition we obtain.

Proposition 2. Consider the BABD system (5.6). Let N+1 be an even number
and define Π ∈ Rn(N+1)×n(N+1) as the permutation matrix corresponding to the
following block reordering

Π
(︁
(xT

0 , . . . ,x
T
N)T

)︁
= (xT

0 ,x
T
2 , . . . ,x

T
N−2,x

T
1 ,x

T
3 , . . . ,x

T
N−1)

T , (5.23)

78

for any vector x = (xT
0 , . . . ,x

T
N)T ∈ Rn(N+1). The odd/even SOF algorithm

yields the following decomposition

A = M−1ΠTDΠ , (5.24)

where M is an invertible BABD matrix, D is block diagonal with two blocks of
equal size, each of which has itself a BABD structure.

Proof. Consider QT
e , QT

o as in equations (5.20), (5.21) respectively. These ma-
trices are block diagonal matrices

QT
e = diag

(︂
QeT

0 , . . . , QeT

N ′

)︂
, QT

o = diag
(︂
QoT

0 , . . . , QoT

N ′

)︂
, (5.25)

where Qe,o
i are 2n× 2n matrices arising from local orthogonal factorizations of

type (5.8). Rewrite Qe,oT

i as a 2× 2 block matrix as follows

Qe,oT

i =

(︃
Qe,o

i11
Qe,o

i12
Qe,o

i21
Qe,o

i22

)︃
,

and define

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qo
021 Qo

022
Qe

121 Qe
122

Qo
121 Qo

122
. . .

. . .

Qe
N ′

21
Qe

N ′
22

Qo
N ′

21
Qo

N ′
22

Qe
022 Qe

012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.26)

Then we have

MA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

So
0 0 T o

0

Se
0 0 T e

0

So
1 0 T e

1

. . .
. . .

. . .

Se
N ′−1 0 T e

N ′−1

Bo
a Bo

b 0
0 Be

a Be
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.27)

79

and

ΠMAΠT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

So
0 T o

0

So
1 T o

1

. . .
. . .

So
N ′−1 T o

N ′−1

Bo
a Bo

b

Se
0 T e

0

Se
1 T e

1

. . .
. . .

Se
N ′−1 T e

N ′−1

Be
a Be

b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the matrix D we were looking for.

5.2.1 Data dependency analysis

Algorithm 8 Odd/Even Structured Orthogonal Factorization

Inputs: A,b
Outputs: x

1: L = log2(P) + 1
2: for l = 1, . . . , L do
3: Assign block equations (p − 2l−1, p) mod N to p-th processor, p =

0, . . . , N
4: Reduce the p-th pair to one block equation on the p-th processor, p =

0, . . . , N
5: end for
6: Solve N

2 block systems of size 2× 2

Figure 5.2 shows the communication pattern of the odd/even SOF algorithm in
the case N = 7. Each block equation

Sixi + Ti+1xi+1 = bi,

is labeled by ei, i = 0, . . . , N −1, while the block equations related to boundary
conditions Bax0 + BbxN = bN is labeled by eN . Here, letters ea stand for
updated equations at level L = 1 and a ∈ {e, o} indicates if the corresponding
equation is part of a system in even or odd unknowns; letters eab stand for
updated equation at level L = 2 with b ∈ {e, o} having the same meaning as
before, while a refers to the subsystem at the previous level.

Each block equation is updated at each step, so that we can assign an equa-
tion to a processor and thus avoid the problem of idle processors, at the cost of
arithmetic redundancy. Moreover, this scheme also produces an halved number

80

e7e6e5e4e3e2e1e0 Step 1. Forward reduction to 2 4n
unknowns systems

eo
7ee

7eo
6ee

5eo
4ee

3eo
2ee

1 Step 2. Forward reduction to 4 2n
unknowns systems

eee
7eeo

7eoe
7eee

7eoo
6eeo

5eoe
4eee

3 Step 3. Solve 4 2n unknowns sys-
tems

x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

TI
A

L

Figure 5.2: Data dependency DAG for odd/even SOF in the case N = 7 (8n
unknowns) with P = 8 slices (and processors) of k = 2 block rows each, showing
the dataflow between each block equation.

L of total sequential steps, since back-substitution can be avoided. A straight-
forward implementation on a GPU should lead to high values of achieved oc-
cupancy, that is the fraction of active computing units over the upper limit,
which is an important indicator of potential efficiency of a massively parallel
algorithm.

The intrinsic difficulty of achieving massive parallelism of GPUs with data
workflows similar to that of SOF (Figure 5.1) has already is also discussed in
Chapter 6, where the solution of large size sparse triangular systems in consid-
ered. As it is shown, in such a case it is not possible to reorganize the DAG
because of numerical issues related to preconditioning.

5.2.2 Parallel structured orthogonal factorization

In a real application we often have N ≫ P even in a massively parallel archi-
tecture, thus the workload is serialized in chunks by the scheduler, as we will
detail in Section 5.2.4 and Section 5.3. Here we propose an algorithm, which we
call PARAllel Structured Orthogonal Factorization (PARASOF), that improves
SOF by switching to its even/odd version to reduce inefficient steps when there
is not enough parallelism to keep a GPU busy. The resulting procedure is the
following: first let us apply the forward reduction phase of SOF to obtain an
Nr × Nr block system, then solve this reduced intermediate system with the
odd/even SOF algorithm. Finally, the backward substitution phase of SOF is
used to retrieve the missing unknowns.

81

Algorithm 9 PARAllel Structured Orthogonal Factorization (PARASOF)

Inputs: A,b, P
Outputs: x

1: if N > P then
2: Divide A into P slices of roughly N

P block rows each
3: Reduce the p-th slice to one block equation on the p-th processor, p =

0, . . . , P
4: end if
5: L = log2(P) + 1
6: for l = 1, . . . , L do
7: Assign block equations (p − 2l−1, p) mod N to p-th processor, p =

0, . . . , Nr

8: Reduce the p-th pair to one block equation on the p-th processor, p =
0, . . . , Nr

9: end for
10: Retrieve the solution of the reduced system by solving N

2 block systems of
size 2× 2

11: if N > P then
12: for k = N

P − 1, . . . , 1 do

13: Retrieve block unknown pN
P +k with the p-th processor, p = 0, . . . , P

14: end for
15: end if

Figure 5.3 shows PARASOF workflow schematically. In this example, per-
form one forward reduction on slices of k = 3 block rows each to reach a 4n
unknowns system, we then switch to even/odd SOF that enable us to finish the
inefficient middle steps more quickly, because they have fewer algorithmic steps
than SOF.

e9e8e7e6e5e4e3e2e1e0 Step 1. Forward reduction to 4n
unknowns

e9e′8e′5e′2 Step 2. Forward reduction to 2 2n
unknowns systems

eo
9ee

9e′o8e′e5 Step 3. Solve 2 2n unknowns sys-
tems

x9e′8e′7x6e′5e′4x3e′2e′1x0

x9x8

x7

x6x5

x4

x3x2

x1

x0

Step 4. Back-substitution to re-
trieve the remaining 6n unknowns

S
E

Q
U

E
N

TI
A

L

Figure 5.3: Data dependency DAG for PARASOF in the case N = 8 (9n un-
knowns) with P = 4 slices (and processors).

82

5.2.3 Solving a sequence of BABD systems

In applications, it is often required to solve not a unique BABD system, but
a sequence of them. There are in general two possible cases: in the first one,
the matrix and the right-hand-side change at each step of the sequence; in the
second, only the right-hand-side changes. The first one happens e.g. in optimal
control problems [16]. In general, here it is necessary to factorize the matrix
from scratch, and we show in the numerical section that PARASOF obtains a
good speed-up in the factorization phase, justifying its adoption. In the second
case, one can use the previous factorization to solve a linear system with multiple
right-hand-sides (or a sequence of linear systems with the same matrix).

Let us detail how to derive a factorization from PARASOF algorithm in order
to cover the latter scenario. In order to do that, one can follow Proposition 1
and Proposition 2: the first step of SOF forward reduction gives an orthogonal
matrix, i.e. Q (5.17), to be stored, that can be subsequently applied to any new
right-hand side b in order to obtain a reduced vector b′, which will be then
used as a right-hand side in the following algorithmic step where even/odd SOF
procedure is used. Each sequential step of the even/odd SOF algorithm gives
an nonsingular matrix which has a BABD structure up to a permutation, i.e.
M (5.26), for a total of Lr total matrices, namely MLr−1, . . . ,M0, which have
to be applied to the reduced right-hand-side from the left in order to update the
reduced vector b′, that can be used to partially retrieve the solution by solving
the block diagonal system achieved by the even/odd SOF procedure. Then, the
solution is fully recovered by the back-substitution phase.

The updated right-hand side in the first step of forward reduction is given
by Qb. Notice that the matrix Q is typically a large dense orthogonal matrix,
but expression (5.17) suggests that we can instead store the rp − 1 sparse fac-
tors Qkp

, . . . , Qkp−2 for each slice, and then apply such matrices in a sequential
fashion on each slice. Again, all slices can be processed in parallel. Simi-
larly, in the even/odd SOF procedure the updated right-hand side has the form
MLr−1 · · ·M0b

′, where the product MLr−1 · · ·M0 gives a large dense nonsin-
gular matrix whose factors are again quite sparse. Therefore, from the storage
point of view it is more convenient to perform these matrix vector products one
at a time, with an evident drawback, that is the important loss in the attainable
parallelism. Indeed, the numerical experiments of Section 5.3.2 will show that
in this case PARASOF suffers from a sequence of length

Lr +max
p

rp − 1

of sequential (sparse) matrix vector products, which makes it uncompetitive in
this setting.

5.2.4 Implementation issues

GPUs have a massively parallel architecture consisting of thousands of small,
efficient cores designed for handling multiple tasks simultaneously. A function

83

that executes on a GPU is usually called kernel. All kernels described in this sec-
tion are written in CUDA language [112], a general purpose parallel computing
platform and programming model that leverages the parallel compute engine in
NVIDIA GPUs to solve many complex computational problems, usually referred
as General Purpose GPU (GPGPU) computing. Each task in CUDA is referred
as thread. Threads are organized by the programmer into Thread Blocks (TBs),
which in turn are grouped into grids. The scheduler splits the threads of the
same block into warps, i.e. the scheduling unit which is composed by 32 threads
that physically run in parallel, and distributes TBs among the Streaming Mul-
tiprocessors (SMs) according their available computing capacity. The threads
of a block can execute concurrently, and multiple TBs can execute concurrently
on one multiprocessor. CUDA devices have several different memory spaces,
all characterized by different scopes and lifetime. Global memory is the main
GPU memory, it is visible to all threads within the application (including the
CPU), and lasts for the duration of the host allocation. Another invaluable
device memory is called shared memory, much smaller in size than the global
memory: it is visible to all threads within that block and lasts for the duration
of the block. It therefore allows threads to share data between one another.
The type of memory used can vary for different data structures within the same
program; it determines the speed and the constraints in communicating data
among processors during their parallel work.

PARASOF requires a large number of independent QR decompositions of
small matrices. Solving together many small linear algebra problems is called
“batching”, which typically consists of a large number of independent operations
(e.g., from hundreds to millions) and the size of each operand is small. The
design of algorithms for batched operations is profoundly different from the
design of large-scale linear algebra: for example, a key distinction with the
(usual) case of a single linear algebra problem is that matrices can be very
small, e.g., sub-warp in size. Therefore, instead of having multiple TBs working
on a single matrix, a basic kernel for batched problems need to be parameterized
to allow configurations where a TB computes e.g. several GEMMs. This design
is critical for obtaining close to peak performances for very small sizes [1]. In
order to achieve high performances, we started from the implementation of
basic linear algebra batched operations provided by the MAGMA project [89]
and modified them to build the kernels of PARASOF.

Let us briefly sketch the main features of our CUDA implementation of
PARASOF. Each matrix is stored in a compressed sparse format, in particular
we choose to store each block as dense in column oriented way, basically a
CSC format with dense sub-matrices of fixed shape instead of scalar items.
Each matrix is therefore represented as a triplet of arrays: data is the array
of corresponding nonzero values; indices is the array of row indices; indptr
points to column starts in indices and data arrays. For a BABD matrix
with N internal blocks, the structure data is three-dimensional array of size
(2(N +1), n, n) and each pair of consecutive blocks is one of the sub-matrices to
be orthogonally decomposed as in (5.8). In order to minimize communications
and to simplify the data access pattern, each block couple of this type can be

84

joined into a single 2n × n rectangular block, thus the final batched structure
actually implemented has size (N + 1, 2n, n) and looks like[︃[︃

Ba

S0

]︃
,

[︃
T0

S1

]︃
, . . . ,

[︃
TN−2

SN−1

]︃
,

[︃
TN−1

Bb

]︃]︃
.

The arrays indptr and indices are omitted, since they can be recovered
in relation to the number N of internal blocks. The rectangular blocks so
defined are distributed (and possibly queued) among the SMs by the scheduler
and overwritten with their QR decompositon in WY compact representation
[124], which allows to apply all Householder vectors at once by mean of BLAS3
operations.

5.3 Numerical experiments

5.3.1 Operation Count

Let us first report the operation count for SOF as stated in [4]. We consider
the solution of BABD (5.6) systems with N internal block rows, obtained on P
processors, where n is the size of each internal block. For simplicity, we take P
as a power of 2, for instance P = 2L, and suppose that P divides N . The cost
of a single-block forward reduction, that is, to go from (5.7) to (5.10), is

46

3
n3 + 30n2 +O(n),

and the cost for a back-substitution (5.13) is

15n2 +O(n).

Table 5.1 shows additional memory requirements and floating-point operation
count for SOF and PARASOF algorithms, in terms of arithmetic operations
carried out sequentially in time by the parallel processor. In the operation
count for SOF algorithm, P represents the number of processors that can work
in parallel. To exemplify, if each core of the parallel processor performs an
addition, we count a single operation. The table also shows the amount of
additional memory required during the computation. Note that we refer to
the total storage, since a GPU has a single global memory space, instead of a
distributed memory typical of coarse grained parallel processors.

For what concerns PARASOF, here Pf stands for the number of cores that
are used to compute a single QR decomposition in parallel, the so called fine
grained parallelism, while Pc stands for the number of QR decompositions that
are actually computed in parallel, that is coarse grained parallelism. Moreover,
Nr + 1 is the number of blocks of the reduced system of Section 5.2.2 that
are processed in parallel, and it should be chosen to be a power of 2 closed
to Pc. Consequently, we set Lr = ⌈log2(Nr + 1)⌉. Note that this algorithm
requires considerably less memory than its non-massively parallel version. This

85

is because back-substitution equations (5.13) do not need to be stored in the Lr

internal steps - actually they do not need to be computed at all - and updated
equations (5.22) can be computed in place, so that each coarse-grained processor
needs only 2n2 additional space to store the compact WY representation of the
QR decomposition [124].

Algorithm Operation count Memory requirements

SOF
(︁
46
3 n3 + 30n2 + 15n2

)︁ (︁
N
P + L− 1

)︁
4n2 (N + P L) + n(N + P)

PARASOF 42
3

n3

Pf
Lr +

(︂
46
3

n3

Pf
+ 30 n2

Pf
+ 15n2

)︂(︂
N
Pc

)︂
2n2Pc + 4n2 (N + Pc) + n(N + Pc)

Table 5.1: Operation count and additional memory requirements for SOF and
PARASOF algorithms.

The algorithm PARASOF gains in parallelism with respect to SOF, in fact
the number of sequential steps is roughly halved, as can be noted by comparing
Figure 5.1 and Figure 5.3. This is confirmed by Figure 5.4, which shows the
operation count of both methods SOF and PARASOF in function of the size n
(Figure 5.4a on the left) and the number N of blocks (Figure 5.4b on the right).
However, parallelism comes at the cost of a significant arithmetic redundancy at
the internal steps, which is justified, anyway, on massively parallel computing
systems such as GPUs. Here, SOF is supposed to be executed on a medium
granularity parallel machine with P = 16 processors, while PARASOF is sup-
posed to be executed on a GPU with 10 Streaming Multiprocessors, containing
64 cores each, that corresponds to an entry-level GPU. Suppose also to fix at
Pf = 32 the fine grain cores; this gives Pc ≈ 10 · 64/32 = 20 coarse grained
parallelism.

Figure 5.4 also shows the related theoretical speed-up: Figure 5.4c shows the
speed-up that can be obtained in the solution of a BABD system with N = 216

internal blocks in function the size n of each block, while Figure 5.4d shows the
speed-up that can be achieved in the solution of a BABD system with internal
blocks of size 16× 16 in function of the number of blocks N .

5.3.2 Execution Times

The theoretical analysis summarized in Figure 5.4 shows potential results that
could be slightly modified in practice. We decided not to compare experimen-
tally PARASOF with a straightforward implementation of SOF on GPUs be-
cause of its poor parallel efficiency, as depicted in Figure 5.1 and Figure 5.3.
Indeed, for this reason we propose PARASOF as a massive parallel algorithm
inspired by SOF. Moreover, we are not aware of a public domain implementation
of SOF on parallel, distributed memory computers.

In this section we measure the execution time for PARASOF with BABD
matrices (5.1) with dense square blocks whose entries have been randomly gen-
erated by mean of numpy.random.rand() and we compare the time to solution
of PARASOF with BABDCR [2], a cyclic reduction based FORTAN90 package

86

2.5 5.0 7.5 10.0 12.5 15.0
n

106

107

108
Op

er
at
io
n
co

un
t

SOF
PARASOF

(a) Operation count, N = 216.

6 8 10 12 14 16
log2(N)

105

106

107

108

Op
er
at
io
n
co

un
t

SOF
PARASOF

(b) Operation count, n = 16.

2.5 5.0 7.5 10.0 12.5 15.0
n

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

d-
up

(c) Theoretical speed-up, N = 216.

6 8 10 12 14 16
log2(N)

5

10

15

Sp
ee

d-
up

(d) Theoretical speed-up, n = 16.

Figure 5.4: Operation count and theoretical speedup of PARASOF vs SOF.

for the solution of BABD systems with the same workflow as SOF. We test its
performance by running the algorithm on two different workstations:

• jupyterhub, with a 3.70GHz Intel(R) Xeon(R) W-2145 CPU and an
Nvidia TITAN V graphic card;

• gpu01, with a 3.50GHz Intel(R) Core(TM) i7-2700K CPU and an Nvidia
GeForce GTX1060 graphic card.

The TITAN V card contists of 80 SMs with 64 cores each, while the GTX1060
card is a system of 10 SMs with 128 cores each. We measure performance using
the execution times; an analysis of performance in terms of FLOPS for each
algorithm can be found in Section 5.3.1. In the following, the performance com-
parison of PARASOF GPU solver and BABDCR CPU solver is carried without
taking into account the time for the CPU-GPU data transfer over the PCI-
Express bus, which can be however superposed to other computations whenever
the solver is used in a more complex application. The problem sizes we choose
range both in the number N of internal blocks and in the size n of each square
block. We focus on subwarp n, so n ≤ 16 since each QR is performed on rect-
angular blocks of 2n ≤ 32 rows and subwarp sizes are, in general, critical for
GPU efficiency.

Figure 5.5 shows the speed-up of PARASOF over BABDCR in function of
the number N of blocks (Figure 5.5b) and in function of the size n of each

87

2 4 6 8 10 12 14 16
n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Sp

ee
d-
up

gpu01, N_r = 63
jupyterhub, N_r = 63
jupyterhub, N_r = 127

(a) Block rows N ≈ 216.

8 10 12 14 16
log2(N)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

d-
up

gpu01, N_r = 63
jupyterhub, N_r = 63
jupyterhub, N_r = 127

(b) Block size n = 16.

Figure 5.5: Speed-up (factorization and solution) of PARASOF over BABDCR.

2.5 5.0 7.5 10.0 12.5 15.0
n

0.2

0.4

0.6

0.8

1.0

Sp
ee

d-
up

gpu01, Nr = 63
jupyterhub, Nr = 63
jupyterhub, Nr = 127

(a) Block rows N ≈ 216.

8 10 12 14 16
log2(N)

0

1

2

3

4
Sp

ee
d-
up

gpu01, Nr = 63
jupyterhub, Nr = 63
jupyterhub, Nr = 127

(b) Block size n = 16.

Figure 5.6: Speed-up (only solution) of PARASOF over BABDCR.

block (Figure 5.5a). Here the factorization and solution phases are performed
at the same time. Figure 5.6 shows the speed-up of PARASOF over BABDCR
in function of the number N of blocks (Figure 5.6b) and in function of the size
n of each block (Figure 5.6a). In this case we are comparing only the solution
phase on a different randomly generated right-hand side. The oscillations on
the left are due to BABDCR execution times.

Notice that the maximum achieved speed-up, varies quite a lot depending
on the size of the reduced system nNr × nNr. Indeed, Nr is a parameter
that should be chosen depending on the device we are using. Here, Nr = 63
generates a reduced system with a total number of block rows equal to 64, while
Nr = 127 generates a reduced system with 128 block rows. The first choice
is well suited for gpu01, and it yields similar performances on jupyterhub.
However, since the number of streaming multiprocessors of jupyterhub is larger,
if we allow Nr = 127 the performances obtained can vary from 10x to 17.5x.
This highlights how the algorithm’s performances can be tuned according to the
parallel architecture on which it executes. For the same reason, we observe a
weaker speed-up on gpu01.

88

The PARASOF GPU solver outperforms the BABDCR CPU solver on the
factorization phase (Figure 5.5), except for the case n = 2 and for the smallest
values of log2(N). This is because for a smaller system size, serial solvers are
very efficient. However, when BABD systems arise from a real BVODE model
(5.4), n and N will not be so small.

5.4 Conclusions

In this chapter, we have studied existing parallel solvers for BABD systems,
and we analyzed the weaknesses of their straightforward implementation on
a GPU. We therefore presented PARASOF, an algorithm for the solution of
linear systems with BABD matrices on massively parallel computing systems
like GPUs. The proposed solver achieved up to 18x speedup over the BABDCR
CPU solver, but it varies obviously with the architectures involved. Its parallel
computational complexity, which is independent from the hardware architecture,
and execution times show a good acceleration of this algorithm compared to the
state-of-the-art existing algorithms. An analogous derivation for ABD systems
can be easily obtained from the description here provided.

The GPU acceleration of these algorithms is useful, for example, in optimal
control systems design [11, 12, 16], that motivated this research. Typically, this
application requires the solution of a long sequence of BABD systems with dif-
ferent parameterizations of the controlled-system BVODE model, in the shortest
possible time. These simulations are often run on embedded systems, that gen-
erally have low perfomance CPUs for computational purposes, but can have a
GPU on board. For example, running the experiments of Section 5.3 on an
entry-level NVIDIA Jetson TX1 we got slightly better performances than those
obtained on the high-end CPU of gpu01.

89

Chapter 6

ILU preconditioning for
Navier-Stokes equations

General Purpose computing on GPUs (GPGPU) is nowadays a cost effective
solution for computational intensive simulations, like those arising from the
discretization of the Navier-Stokes equations, where often O(105) coupled non-
linear equations must be solved at each discretization time instant, to capture
the relevant underlying physics of the fluid motion. The inherent massively par-
allel architecture of GPUs demands completely different algorithms from those
used in a mainly sequential, CPU based, computing architecture. For example,
it turns out that in the linear algebra core problem underlying the CFD spe-
cific discretization methods, the cost of each iteration may be much cheaper for
methods that are not much efficient in the total iteration count, thus making
them faster, anyway, in the time spent for the simulation, which is the main per-
formance desired from a parallel implementation. Thus on a GPU, surprisingly,
a simple diagonal preconditioner actually outperforms much more mathemat-
ically robust preconditioners, like ILU, for a wide range of Reynolds/Atwood
numbers. However, this is not the case anymore when the Reynolds number de-
creases at low levels, and the viscosity of the fluid dominates against convection,
for a wide range of Atwood numbers. This phenomenon becomes even more ev-
ident as the higher viscosity drives the fluid toward a quasi-solid behavior, like
e.g. in a phase transition problem, quite important in applications.

The aim of this chapter is to obtain from an ILU preconditioner the best
performance on a GPU architecture. For this reason, we mainly investigate the
parallelization of the triangular systems solver needed at each time iteration,
within the GMRES method preconditioned by ILU factorizations. This is the
computationally intensive operation that requires the most of the time spent
by the simulation. We compare an iterative method with a direct one. Several
issues arise in this analysis. Mainly, direct methods suffer from a low level
of parallelization, being quite inefficient on a GPU, while iterative methods
suffer from the high ill-conditioning of the triangular ILU factors, requiring a

90

lot of iteration with simple methods, like Jacobi, or a second preconditioner in
more sophisticated methods, thus making the whole algorithm too expensive
and/or complicated. We show, for a wide range of Reynolds/Atwood numbers,
that the full-iterative ILU-based solver here considered has better performance
on a GPU against intrinsic massively parallel preconditioners like the diagonal
preconditioner.

In the literature, it has been shown that the quality and effectiveness of in-
complete factorizations can be significantly enhanced by mean of RCM ordering
[51], in particular for nonsymmetric problems [14]. Sparse triangular systems
can be solved on parallel computers using e.g. direct level scheduling techniques
[5, 122, 108], iterative Jacobi and block Jacobi [7] or hybrid direct/iterative
methods [114, 45]. Level scheduling techniques are severely penalized by the
use of RCM ordering. In blocking techniques, such as block Jacobi and SPIKE,
there is still a direct component in the solver. Moreover, their efficiency highly
depends on the block structure and finding the optimal blocking for a given
problem is not an easy task [49, 104]. Moreover, there is a difficult trade-off
between parallelism and speed of convergence, as we will show in the numerical
result. Apart from ILU decompositions, another class of preconditioner which is
recently growing in popularity on parallel machines is the so called Incomplete
Sparse Approximate Inverse (ISAI) [9].

Recent applications of this kind of simulations concern e.g. the solution of
inverse problems arising in the monitoring of systems whose relevant physical
variables cannot be overall measured, e.g. where some time-dependent boundary
conditions must be inferred from measurements at the down-stream of a river
[56]. The solution of such an inverse problem requires hundreds of simulations
of the direct problem here considered, making its parallel acceleration highly
desirable or even essential.

Note that a relevant topic that we do not consider here is mesh adaptation
based on a-posteriori error indicators [28], that in case of fluid motion would
be quite anisotropic [105] and, as is well known, demanding for an high quality
adapted mesh. This is a common way to tailor the number of degrees-of-freedom
to the specific problem simulation. We do not consider it here mainly because a
parallel mesh generator/adaptation on GPUs is outside the scope of this work
and not an easily available tool.

The structure of this chapter is as follows: in Section 6.1 we describe the
parallelization of the solution of triangular systems with direct and iterative
methods. In Section 6.2 we discuss a technique to update the L and U factors
of an ILU factorization along the sequence of linear systems arising from the
discretization of a time-dependent problem. In Section 6.3 we describe the
equations governing the motion of an incompressible viscous Newtonian fluid
with variable density and a reasonable discretization scheme for them. The
parallel GPU implementation of this scheme is presented in Section 6.4 and
the numerical experiments are detailed in Section 6.5. It follows a section with
conclusions.

91

6.1 Sparse triangular solves on GPUs

Solving triangular systems is an inherently sequential computation activity: in
fact, these systems are typically solved by forward and backward substitution.
The most common parallel sparse triangular solvers are based on level-scheduling
techniques [5, 122], and their efficient implementation on GPUs is still an open
challenge [108]. These methods are made of two phases: the analysis phase rep-
resents the data dependencies in the solution of a triangular system as a directed
graph, where the nodes stand for the rows and an edge represents a dependence
between them; thus one can group together independent rows in levels, which
are processed one by one in the solve phase. Since the matrices considered
are triangular, the data dependency are represented as a directed acyclic graph
(DAG). Notice that, by construction, the rows corresponding to nodes at the
same level in the graph are independent and can be processed in parallel, but
the levels still have to be processed in a sequential fashion. These techniques’
weakness lies in the amount of work available in each level, which is often too
poor too fully exploit the massive parallelism of many-cores architectures. This
situation typically arises when ordering algorithms are applied.

A different approach consists in relaxing the solution of triangular systems
through iterative methods. Indeed, in the case of triangular solves for precon-
ditioning in Krylov methods, an approximate solution can be accepted instead
of the exact one, at the price of increasing the outer number of iterations for
convergence. This choice is furthermore justified since these triangular systems
often arise from approximate factorizations.

Classical iterative methods update the components of the solution vector
and therefore require synchronization between iterations. The solution can be
updated using information of the previous iteration, such as Jacobi method,
or also information coming from the current one, such as Gauss-Seidel. It is
known that Gauss-Seidel convergence is faster with respect to Jacobi, but faster
convergence comes at cost of a reduced parallelism. However, Jacobi method is
based on sparse matrix-vector multiplication (SpMV), which is highly parallel
and high-performing on GPUs, making it an attractive choice.

The idea of using iterative triangular solves for ILU first appeared in [48],
and block Jacobi iterative triangular solves for ILU was published in [49]. Huckle
and Bräckle [94] proposed other stationary iterative methods for the iterative so-
lution of LU systems, and more recently Anzt et al. [9] explored how incomplete
sparse approximate inverse preconditioning can be applied to sparse triangular
systems.

6.1.1 On level-scheduling techniques

Let us consider the symmetric structured matrix A = (aij) shown in (6.1) as
example. We are interested in its incomplete LU factorization with no fill-in,
also known as ILU(0) [122], i.e. we look for A ≈ LU , where the triangular
factors L and U have the same pattern as the triangular parts of the original
matrix A. Figure 6.1 shows the DAG illustrating the dependencies within the

92

rows of the lower triangular factor, whose pattern has been highlighted in bold
in (6.1). The graph is constructed so that there is an edge from node j to node i
with i > j if there is a non zero matrix entry aij . As we can see from Figure 6.1,
the rows of (6.1) can be grouped in two levels of four elements each, the rows
therein are independent and they can be processed in parallel.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a15 a16
a22 a26 a27

a33 a37 a38
a44 a34

a51 a55

a61 a62 a66

a72 a73 a77

a83 a84 a88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.1)

Lev. 1 1 2 3 4

Lev. 2 5 6 7 8

Figure 6.1: Data dependency DAG.

Now, consider a well known band-reducing matrix ordering, namely Reverse
Cuthill-Mckee (RCM) algorithm [51]. Let us denote by Ã = (ãij) the matrix in
(6.2), obtained by applying RCM ordering to matrix (6.1), and consider again
its ILU(0) factorization. Figure 6.2 shows the data dependency DAG associated
to the L factor, whose pattern is highlighted in (6.2).⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã11 ã12
ã21 ã22 ã23 ã24

ã32 ã33 ã34
ã42 ã43 ã44 ã45

ã54 ã55 ã56
ã65 ã66 ã67

ã76 ã77 ã78
ã87 ã88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.2)

93

Lev. 1 1

Lev. 2 2

Lev. 3 3

Lev. 4 4

Lev. 5 5

Lev. 6 6

Lev. 7 7

Lev. 8 8

Figure 6.2: Data dependency DAG with RCM ordering.

The ordering has modified the data dependency DAG, maximizing the num-
ber of levels and making the computation purely sequential. On one hand, as the
matrix entries get clustered close to the diagonal, the dependencies between the
rows increase and the related DAG gets ”stretched”, reducing the exploitable
parallelism in level-scheduling techniques. On the other hand, it has been shown
that RCM ordering can significantly improve the quality and the effectiveness
of incomplete factorizations [14], in particular for nonsymmetric problems.

6.1.2 An iterative approach

Let us consider the square triangular system Tx = b and suppose the matrix T
has all non-zeros on its diagonal, i.e. T is invertible. Jacobi iteration writes{︄

x(0) = diag(T)−1b,

x(k+1) = diag(T)−1b+ (I − diag(T)−1T)x(k).
(6.3)

In what follows we will refer to Jacobi iterations as sweeps. Convergence for the
Jacobi method is established as long as the iteration matrix, namely the matrix
(I − diag(T)−1T), has spectral radius strictly less than one. In this case the
condition ρ(I − diag(T)−1T) < 1 is trivially verified, since the iteration matrix
is nilpotent. Few sweeps of (6.3) will be effective when the matrix T is not badly
ill-conditioned. However, an ILU factorization of an ill-conditioned matrix A
must have ill-conditioned L, U factors to result in a faster convergence of Krylov
methods [9]. A more robust alternative consists in a block approach. If a block
structure is imposed on the matrix T then it can be trivially written as the sum

T = D + ˜︁T , (6.4)

where D = diag(D1, · · · , Dn) is a block diagonal matrix. The block Jacobi
iteration writes as its scalar counterpart (6.3) by simply replacing diag(T) with
D. The new iteration matrix (I−D−1T) still fulfills the convergence condition,
but the method is no more based on SpMV: in fact, block Jacobi method requires

94

the computation of D−1T . One can explicitly invert the matrix D, taking into
account that matrix inversion can lead to numerical instability, or compute the
solution of the triangular system

Dy = Tx(k), (6.5)

at each sweep. Again, a direct level-scheduling method should be used to solve
the system above. If we look at the error we have

e(k+1) = x(k+1) − x = D−1(b+ (D − T)x(k))−D−1(b+ (D − T)x) =

D−1(D − T)(x(k) − x) = (I −D−1T)e(k) = (I −D−1T)k+1e(0), (6.6)

and therefore ⃦⃦⃦
e(k)

⃦⃦⃦
≤
⃦⃦
(I −D−1T)k

⃦⃦ ⃦⃦⃦
e(0)
⃦⃦⃦
. (6.7)

It’s easy to see that the iteration matrix G = (I −D−1T) is nilpotent and its
index is equal to the number of diagonal blocks of D. This means, as one could
expect, that fewer bigger blocks imply a faster convergence. As a drawback, a
small number of blocks also strongly limits the available parallelism in compu-
tations. Moveover, one has to consider the off-diagonal blocks of the iteration
matrix, given by Gij = D−1

i Tij , i ̸= j. If the norm of D−1
i is small, then the

norm of the off diagonal blocks will be small [49], as desired. Block Jacobi
method can be more effective for ill-conditioned problems, but clearly its per-
formance and efficiency highly depend on the properties of the block diagonal
matrix D.

6.2 Preconditioning a sequence of linear systems

Let A be a sparse nonsingular matrix of size n× n. In classic numerical linear
algebra literature, a preconditioner is a matrix M such that M−1 ≈ A−1, i.e.
its inverse approximates that of A. This is used to transform the linear system
(1.1) into a more tractable one, namely

M−1Ax = M−1b. (6.8)

Therefore, M should be chosen such that M−1A is a good approximation of
the identity. At each step of the preconditioned algorithm, it is necessary to to
solve a linear system with matrix M .

It is known that the incomplete LU decomposition A ≈ LU is a class of
robust preconditioners for Krylov subspace method [122]. Incomplete factor-
izations are computed up to a residual matrix R which is set to zero outside a
given pattern

Rij = (A− LU)ij = 0, (i, j) ∈ S, (6.9)

95

where S is some prescribed sparsity pattern related to A. This decomposition
is not unique, therefore it is customary to assume L to be a unit triangular
matrix. Depending on the difficulty of the problem, one can choose the sparsity
pattern (and consequently the accuracy of the incomplete factorization) on the
basis of a drop tolerance or a level-of-fill scheme, e.g. by keeping the k-th order
fill-ins, leading to ILU(k) preconditioners [122]. From now on we will assume
that the lower triangular factor L coming from LU-type decompositions is a
unit triangular matrix (i.e. all the entries of its main diagonal are ones). Given
a square matrix X, we will denote by triu(X) its upper triangular part, which
includes the diagonal, while for the lower triangular part we will distinguish the
strict lower part denoted by tril(X), that has only zeros on the diagonal, from
the unit lower part denoted by tril(X).

Consider now a sequence of linear systems

Anx
n = bn, n = 0, 1, (6.10)

Many important applications involve a sequence An of slowly varying matrices,
which is a common situation in computational fluid dynamics, where the equa-
tions change only slightly and possibly in some parts of the physical domain. In
such situations it is wasteful to recompute entirely any preconditioner computed
for the previous coefficient matrix. Calgaro et al. [37] proposed an iterative tech-
nique to incrementally update incomplete LU decompositions, called Iterative
Threshold Alternating Lower Upper (ITALU) correction. Given initial guesses
L(0), U (0), the ITALU algorithm is presented in Algorithm 10. In what follows,
we write ITALU(m) in order to emphasize the fixed number of sweeps.

Algorithm 10 Iterative Threshold Alternating Lower Upper (ITALU)

Inputs: A, L(0), U (0), m
Outputs: L, U

1: for k = 0, . . . ,m− 1 do
2: Compute R(k) = A− L(k)U (k)

3: Compute XU = triu((L(k))−1R(k))
4: Apply dropping to XU

5: U (k+1) = U (k) +XU

6: Compute R(k+1/2) = A− L(k)U (k+1)

7: Compute XL = tril(R(k+1/2)(U (k+1))−1)
8: Apply dropping to XL

9: L(k+1) = L(k) +XL

10: end for
11: L = L(m), U = U (m)

The algorithm above is based on the corrections steps 3, 7 whose computa-
tion require the solution a set of n triangular systems, or a triangular system
with multiple sparse right-hand side

XU = (L(k))−1R(k) → L(k)XU = R(k).

96

This computation turns out to be a bottleneck on parallel architectures, specially
when the problem size n is large. The same authors proposed [37] a less accurate
but far simpler update, that can be obtained by replacing the computation in
step 3 (resp. 7) with the following diagonal system

diag(L(k))XU = R(k) (resp. XL diag(U (k+1)) = R(k+1/2)).

Moreover, steps 4 and 8 can be omitted by computing only the entries of the
residual matrix which lie on the sparsity pattern S chosen for the incomplete
factorization. Formally, the sparsity pattern S can be associated to a n × n
matrix S whose entries are zeros and ones: a zero entry corresponds to an
unwanted element that will be dropped. We denote by X ⊙ S the component-
wise product of the matrices X and S. It can be proved that if S contains the
pattern of ˜︁L and ˜︁U , where we supposed that A admits an LU decomposition
A = ˜︁L˜︁U , and the initial guess L(0) is such that L(0) ⊙ S = L(0) and L(k), U (k)

are defined for k = 0, . . . , n, then the sequences L(k), U (k) converge to ˜︁L and ˜︁U
respectively in at most n steps [37].

We define the matrix M (k) such that

triu(M (k)) = U (k), tril(M (k)) = L(k),

recalling that there is no need to store the diagonal of the lower factor since
it is a unit triangular matrix. Including this notation, Algorithm 10 rewrites
in its simplified version called Simplified Iterative Threshold Alternating Lower
Upper (SITALU) and presented in Algorithm 11. In what follows, we write
SITALU(m) in order to emphasize the fixed number of sweeps.

Algorithm 11 Simplified Iterative Threshold Alternating Lower Upper
(SITALU)

Inputs: A, L(0), U (0), m
Outputs: L, U

1: for k = 0, . . . ,m− 1 do
2: Compute R(k) = (A− tril(M (k))triu(M (k)))⊙ S
3: triu(M (k+1)) = triu(M (k)) + triu(R(k))
4: tril(M (k+1)) = tril(M (k)) + tril(R(k)) diag(M (k))−1

5: end for
6: L = L(m), U = U (m)

Steps 3 and 4 can be performed at once with a matrix-matrix summation
provided that the residual matrix has been previously scaled as follows

r
(k)
ij = r

(k)
ij diag(M (k))jj , i < j,

where R(k) =
(︂
r
(k)
ij

)︂
. Notice that Algorithm 11 produces no fill-in in the pre-

conditioning factors, and if we choose S to be the pattern of A, then all matrices

97

involved share the same sparsity pattern, with an important memory saving.
Algorithm 10 and Algorithm 11 can be used to update the factorization of An

in (6.10) at the current step n by taking as initial guesses for the ILU factors of
An−1 at the previous time step.

An alternative and more general approach has been proposed in [13] in the
context of Newton-Krylov methods. This procedure differs from the one just
presented as it mainly relies on approximate inverse preconditioners, whose
application is based on matrix-vector multiplication, and therefore it can be
efficiently implemented on parallel computers. An inverse preconditioner is a
matrix M such that M ≈ A−1, and thus the linear system (1.1) is transformed
into

MAx = Mb. (6.11)

The main difference with (6.8) is that the application of an inverse precondi-
tioner requires only matrix-vector products rather than the solution of one or
more linear systems. Here we consider this procedure for the update of the
inverse ILU preconditioner [141].
Consider the sequence (6.10) and consider first an ILU factorization of the initial
matrix

A0 ≈ LDU, (6.12)

where L is lower triangular with unitary diagonal, U is upper triangular with
unitary diagonal, and D is diagonal and nonsingular. The idea is to avoid the
triangular solving by computing sparse approximate inverses on the triangular
factors

Z ≈ L−T , W ≈ U−1, (6.13)

and to set the preconditioner M0 as

M0 = WD−1ZT ≈ (A0)
−1. (6.14)

Since Z, W can be dense even if L and U are very sparse, again a sparsity
can be enhanced on the basis on a drop rule or a level-of-fill scheme. However,
the computation in (6.13) require the solution of two triangular systems with
multiple right-hand-sides, or, equivalently, the solution of 2n triangular systems,
which is indeed a computational intensive operation.
An incomplete factorization of the inverse of the current matrix An can be
obtained as follows. Let first

∆n = An −A0, En = ZT∆nW, (6.15)

consequently we have

A−1
n = (A0 +∆n)

−1 = WW−1(A0 +∆n)
−1Z−TZT ≈W (D + En)

−1ZT .
(6.16)

98

This suggests to set the preconditioner Mn equal to W (D+En)
−1ZT . However,

there is no guarantee that the matrix (D + En)
−1 is sparse. Therefore, we set

Mn = W (D + ˜︁En)
−1ZT , (6.17)

where ˜︁En = (ZT ˜︁∆nW)⊙ SE , ˜︁∆n = ∆n ⊙ S∆.

Here, SE , S∆ are binary matrices associated to given sparsity patterns SE ,S∆.
A general choice suggested in [13] consists in taking SE , S∆ as banded matrices

with a prescribed bandwidth. In such a case, (D + ˜︁En) is also a banded ma-

trix. If its inverse (D + ˜︁En)
−1 admits an LU decomposition, then its factors

are banded matrices with the same bandwidth. Alternatively, a Givens QR
decomposition may be computed whose R factor has a double bandwidth with
respect to the bandwidth of the original matrix. These operations are compu-
tationally expensive and their parallel implementation is not trivial. Moreover,
the computation (6.13) to obtain Z and W may be cause a bottleneck, as it
has been already pointed out. However, this operation does not have to be
performed for each matrix in the sequence (6.10): it can be performed once for
the first matrix A0, and it can be performed again later on in order to restart
the procedure, e.g. with every n̄ iterations, or when the preconditioner loses its
effectiveness. As an advantage, the proposed technique can be generalized to
update any incomplete factorization of the inverse of the reference matrix, e.g.
approximate inverse (AINV) preconditioner for nonsymmetric matrices [15].
In this thesis, we restrict to techniques based on direct ILU factorizations, since
an accurate comparison between these two approaches would mainly require an
extensive experimental activity made on benchmark problems, which is out of
the scope of this treatise.

6.2.1 Comparison with existing parallel ILU algorithms

Different strategies are possible in order to update an ILU decomposition apart
from those described in [37], in particular Chow and Patel [48] provide a method
that was later expanded in [8]. The technique is closely related to ITALU
algorithm, as we show in what fallows. With reference to Algorithm 14, write

M (k) =

{︄
l
(k)
ij , i > j

u
(k)
ij , i ≤ j

, (i, j) ∈ S,

A = aij , (i, j) ∈ S

R(k) = r
(k)
ij , (i, j) ∈ S.

Then, the SITALU(m) algorithm rewrites component-wise as Algorithm 12.

99

Algorithm 12 Component-wise SITALU(m)

Inputs: A, L(0), U (0), m
Outputs: L, U

1: for k = 0, . . . ,m− 1 do
2: for (i, j) ∈ S do

3: Compute r
(k)
ij = aij −

∑︁min(i,j)
l=1 l

(k)
ij u

(k)
lj ,

4: l
(k+1)
ij = l

(k)
ij + r

(k)
ij /u

(k)
jj , i > j

5: u
(k+1)
ij = u

(k)
ij + r

(k)
ij , i ≤ j

6: end for
7: end for
8: L = L(m), U = U (m)

Step 4 rewrites

l
(k+1)
ij = l

(k)
ij + r

(k)
ij /u

(k)
jj

= l
(k)
ij +

(︄
aij −

j∑︂
l=1

l
(k)
il u

(k)
lj

)︄
/u

(k)
jj

= l
(k)
ij +

(︄
aij −

j−1∑︂
l=1

l
(k)
il u

(k)
lj

)︄
/u

(k)
jj − l

(k)
ij u

(k)
jj /u

(k)
jj

=

(︄
aij −

j−1∑︂
l=1

l
(k)
il u

(k)
lj

)︄
/u

(k)
jj .

Similarly, step 5 rewrites

u
(k+1)
ij = u

(k)
ij + r

(k)
ij

= u
(k)
ij +

(︄
aij −

i∑︂
l=1

l
(k)
il u

(k)
lj

)︄

= u
(k)
ij +

(︄
aij −

i−1∑︂
l=1

l
(k)
il u

(k)
lj

)︄
− l

(k)
ii u

(k)
ij

= aij −
i−1∑︂
l=1

l
(k)
il u

(k)
lj .

These expressions are exactly the synchronous version of the Fine-Grained Par-
allel Incomplete Factorization algorithm proposed by Chow and Patel in [48]
and presented in Algorithm 13.

100

Algorithm 13 Fine-Grained Parallel Incomplete Factorization

Inputs: A, L(0), U (0), m
Outputs: L, U

1: for k = 0, . . . ,m− 1 do
2: for (i, j) ∈ S do

3: l
(k+1)
ij =

(︂
aij −

∑︁j−1
l=1 l

(k)
il u

(k)
lj

)︂
/u

(k)
jj , i > j

4: u
(k+1)
ij = aij −

∑︁i−1
l=1 l

(k)
il u

(k)
lj , i ≤ j

5: end for
6: end for
7: L = L(m), U = U (m)

6.3 Nonhomogeneous incompressible Navier-Stokes
equations

Let Ω be a domain in Rd, d = 2, 3, the equations describing the motion of an
incompressible viscous Newtonian fluid with variable density are the following:

∂tρ+∇ · (ρu) = 0, (6.18)

∂t(ρu) +∇ · (ρu⊗ u)− µ∆u+∇p = ρf , (6.19)

∇ · u = 0, (6.20)

where the unknowns are the velocity field u = (u1, . . . , ud) and the scalar func-
tions ρ, p representing the density and the pressure of the fluid respectively.
Here the right-hand side f = (f1, . . . , fd) of (6.19) embodies the external forces,
such as gravity, and µ > 0 is the viscosity of the fluid. These functions depend
on the space variable x = (x1, . . . , xd) ∈ Ω and on the time variable t ∈ [0, T],
with T > 0.

Existence and uniqueness of the solution of (6.18)-(6.20) can be proved [101],
provided that the system above is coupled with initial and boundary conditions

u0

⃓⃓
Γ
= 0 ρ

⃓⃓
t=0

= ρ0, u
⃓⃓
t=0

= u0, (6.21)

where Γ is the boundary ∂Ω. Notice that the system (6.18)-(6.20) differs from
the usual Navier-Stokes formula only because of the presence of the non-constant
density ρ. Let us denote by ∆t the time step and set tn = n∆t, with n ≥ 0.
Thanks to a particular time splitting due to Strang [130], it is possible to treat
separately the conservation of mass (6.18) from the momentum equation and
the incompressibility constraint (6.19)-(6.20), to solve the former with a finite
volume method, which is a natural choice for conservation laws and is massively
parallel since the solution can be computed independently on each control vol-
ume, and the latter with a finite element approximation. The resulting hybrid
finite volume/finite element scheme relies on some compatibility conditions for
the velocity field. Details on the spatial and temporal discretization are provided
in [35, 36].

101

Notice that even if the density update is separated from the other equations
with the Strang splitting, the velocity and pressure are still coupled. One can
furthermore simplify the numerical problem by mean of the so called projection
methods, first introduced in [132, 47]. Projection methods are based on the
Helmholtz–Hodge decomposition and they all are based on the solution of a
problem in the form:

−∇ ·
(︃

1

ρn+1
∇Φ
)︃

= Ψ, ∂nΨ
⃓⃓
Γ
= 0, (6.22)

for suitable Φ and Ψ. When the density ρ is constant this is no more than
a Poisson equation, but in the variable case a finite element solution of the
equation above requires the assembling (and the preconditioning) of a time
dependent matrix at each time step. Note also that the higher the gap between
the maximum and minimum density value, the more ill-conditioned will be the
approximation of the operator above. This is why we choose to adopt a penalty
coefficient based strategy [86]. We define

χ ∈
(︃
0,min

x∈Ω
ρ0

]︃
, (6.23)

where we assume there is no empty region at time t = 0, which means that
minx∈Ω ρ0 > 0. In practice we will set χ = minx∈Ω ρ0. Let us introduce a new
scalar variable ϕ which will represent the pressure correction in time and we
set ϕ0 = 0. Suppose that the numerical solution (ρn,un, pn, ϕn) at time tn is
known, then the velocity field at time tn+1 is obtained with the old value of the
pressure by solving

ρ∗
(︃
un+1 − un

∆t
+ (un+1

⋆ · ∇)un+1

)︃
− µ∆un+1 +∇pn = fn+1, un+1

⃓⃓
Γ
= 0,

where un+1
⋆ = 2un − un−1 is a second order extrapolation and ρ∗ is equal to

ρn+1 or ρn+2, depending on the Strang step. Note that the equation above
involves only one velocity field u at time tn and tn+1 in this equation. The
intermediate and the end-of-step velocities familiar from conventional pressure-
correction methods have been consolidated to one velocity field, see [86] for
details. Then we compute the pressure correction in rotational form

∆ϕn+1 =
χ

∆t
∇ · un+1, ∂nϕ

n+1 = 0

pn+1 = pn + ϕn+1 − µ∇ · un+1.

First-order error estimates are proved, and stability of a formally second-order
variant of the method is established [87]. To obtain a second-order scheme we
use the three level BDF2 method. The momentum equation is then discretized
as follows

ρ∗
(︃
3un+1 − 4un + un−1

2∆t
+ (un+1

⋆ · ∇)un+1

)︃
− µ∆un+1 +∇

(︃
pn +

4

3
ϕn − 1

3
ϕn−1

)︃
= fn+1,

un+1
⃓⃓
Γ
= 0.

(6.24)

102

The pressure correction is evaluated by solving

∆ϕn+1 =
3χ

2∆t
∇ · un+1, ∂nϕ

n+1 = 0, (6.25)

and the new pressure is finally given by

pn+1 = pn + ϕn+1 − µ∇ · un+1. (6.26)

Note that equation (6.24) holds independently for each component of the ve-
locity field, which therefore can be computed in parallel. It is well known that
the basis functions of finite element spaces for discretising the velocity and
pressure fields have to be carefully chosen so that they satisfy the inf-sup, or
Babuška–Brezzi condition [79]. We choose the P2 − P1 elements, also known
as Taylor Hood elements. In view of (6.24), a finite element approximation of
the density is needed. By construction, the finite volume scheme leads to three
density values on each triangle of the mesh, therefore a P1 reconstruction is a
natural choice (see [35]). Introducing the FEM nodal unknowns

uh,i = (ui,1, . . . , ui,Nu)
T ∈ RNu , i = 1, . . . , d, (6.27)

ph = (p1, . . . , pNp
)T ∈ RNp , (6.28)

ϕh = (ϕ1, . . . , ϕNp
)T ∈ RNp , (6.29)

what we end up with is the resolution at each time step of the algebraic problem

Anu
n
h,i = Fn

i , i = 1, . . . , d, (6.30)

Lϕn
h = Fn

ϕ , (6.31)

Mpnh = Fn
p . (6.32)

The matrices in equation (6.31) and (6.32) are respectively the stiffness and
mass matrix. These matrices have size Np × Np, they are symmetric positive
definite and constant in time, thus one can compute a preconditioner once for
all, while the matrix in equation (6.30) has size Nu ×Nu, it is time dependent
and the non constant density implies this matrix is not symmetric, even if its
symbolic structure does. The sequence {An} is made of sparse and typically
very large matrices that shares the same pattern and slightly differ one from
the other, therefore it is desirable to take advantage of previous systems in the
preconditioning strategy.

6.4 Hybrid CPU-GPU implementation

GPUs have a massively parallel architecture consisting of thousands of small,
efficient cores designed for handling multiple tasks simultaneously. Each task
in CUDA is referred as thread. Threads are organized by the programmer into
blocks, which in turn are grouped into grids. Threads of the same block are
split by the scheduler into warps, i.e. the scheduling unit which is composed

103

by 32 threads that physically run in parallel. The threads of a block can exe-
cute concurrently, and multiple thread blocks can execute concurrently on one
multiprocessor. CUDA devices have several different memory spaces, all char-
acterized by different scopes and lifetime. Global memory is the main GPU
memory, it is visible to all threads within the application (including the CPU),
and lasts for the duration of the host allocation. Another invaluable device
memory is called shared memory, it is visible to all threads within that block
and lasts for the duration of the block. This type of memory allows for threads
to communicate and share data between one another.

The kernels described in this section are written in CUDA language [109],
while other algorithms such as GMRES have been accelerated by mean of
NVIDIA libraries for dense and sparse parallel linear algebra [110, 111]. In
order to limit memory consumption, we choose to store the matrices in com-
pressed sparse row (CSR) format. Each matrix is composed by three arrays:
data is the array of corresponding nonzero values; indices is the array of column
indices; indptr points to row starts in indices and data arrays.

In GPGPU the device is often used as a co-processor for computations well
suited to parallelization. Here, we follow this paradigm. As shown in Figure 6.3,
data are initialized on the CPU and then GPU handles all the computations.
The final result is sent back to the CPU for post processing. Each Strang
step is composed by a Finite Volume step to obtain the new density and a
Finite Element step to obtain velocity and pressure. The former can be solved
with perfect parallelism, since it is possible to reconstruct the numerical fluxes
independently for each grid point and then to recover the now solution by adding
all flux variations. The latter requires at each time step the assembly of the
time dependent matrix and the corresponding right-hand side to obtain the
velocity components, which are independent on each other and therefore can be
computed in parallel, and then the resolution of two more linear systems in order
to recover the pressure. The control flow below shows the intrinsic sequential
dependencies of the computation, while each block represents a parallel task.

For what concerns Algorithm 11, from now on we will assume that S is the
pattern of the sequence of matrices (6.30). This way, we will need only one
copy of the indices and indptr arrays in the implementation, with an important
memory saving. Furthermore, the matrix sum in Algorithm 11 can be computed
by simply adding the related data arrays. The only left issue is the parallel
computation of

R = (A− tril(M)triu(M))⊙ S. (6.33)

Storing the triangular factors L and U in the same CSR matrix M helps to
achieve a more efficient memory access pattern in matrix multiplication and then
to exploit the data spatial locality. Moreover, Reverse Cuthill-Mckee algorithm
also enhances this property. The computation (6.33) is handled by a single
CUDA kernel that we designed on row-wise matrix product. Consider the matrix
product X = Y Z, where Y has size n ×m and Z has size n × l. For a matrix
X, denote by X(i, :) the i-th row of X and by IX(i) the set of column indices

104

CPU

Init FV: update ρ

FE: update
u, p

FE: update
u, p

FV: update ρ

stopPost
processing

Strang step 1

Strang step 2

GPU
Send data to GPU

noyes
Send data to CPU

Compute
fluxes

Update ρ

Assembly
An and Fn

ui

Solve
AnUn

i = Fn
ui

Solve
LΦn = Fn

φ

Solve
MPn = Fn

p

Figure 6.3: Hybrid CPU-GPU program flow chart.

corresponding to non-zero elements in the i-th row of X. Then we have

X(i, :) =
∑︂

k∈IY (i)

YikZ(k, :), i = 1, . . . ,m. (6.34)

Coming back to equation (6.33), now all rows of the residual matrix R are
independent of each other and each one can be assigned to a warp. Thus warp
i performs the following computation

R(i, :) = A(i, :)−
∑︂

k∈Itril(M)(i)

tril(M)ik triu(M)(k, :). (6.35)

Each row is incrementally computed in shared memory and then copied back
to global memory. The i-th warp computes the sum in (6.35) as a sequential
loop over the rows with index in Itril(M)(i), and other two shared array struc-
tures are used to cyclically load the related data and indices values. Each warp
thread processes an entry of the corresponding row of the outcoming matrix.
In order achieve the correct result, each thread needs to read exactly once the
currently loaded row of triu(M). This operation is done in a cyclic fashion:
each thread first reads the value corresponding to its lane index (the local index
of the thread inside the warp), and then reads the successive elements, starting
back from the beginning if the index falls outside the row. This way there is no

105

concurrency in shared memory reads. For what concerns read/write operations
between global and shared memory, the CSR format ensures (partially) coa-
lesced memory accesses. The resulting pseudo-code is shown in Algorithm 14.
In practice many optimizations can be added to this computation, for instance
by exploiting warp synchronization, which is anyway an hardware concept and
has to be handled with care. For this reason the algorithm presented is limited
to a matrix structure that admits only 32 non zeros per row. In many cases it is
sufficient and this bound is not a restriction, however with slight modifications
one can make a warp process a row with a number of entries up to a multiple
of 32.

6.5 Numerical simulations

In this section, we report numerical results confirming the expected simula-
tion speed-up. The system of equations (6.18)-(6.20) can be useful to model
Newtonian multi-fluid flows, that are used extensively from microfluidics to
industrial-scale applications. To this purpose, we rewrite the system in the
following dimensionless form

∂tρ+∇(ρu) = 0,

ρ (∂tu+ (u · ∇)u)− 1

Re
∆u+∇p =

1

Fr2
ρg,

∇ · u = 0,

(6.36)

where we introduced the following parameters:

• the Reynolds number Re = ULρ(µ)−1 = UL/ν;

• the Froude number Fr = U(GL)−1/2.

Here U , L, ρ are the velocity, length and density reference values respectively, G
is the magnitude of the gravitational field g and finally µ and ν are respectively
the dynamic and kinematic viscosity of the fluid. As stated in Section 6.3,
existence and uniqueness hold as long as equations (6.36) are coupled with
proper boundary and initial conditions. The Atwood number is defined as

At =
maxΩ ρ0 −minΩ ρ0
maxΩ ρ0 +minΩ ρ0

, (6.37)

according to Tryggvason’s definition [139]. In what follows we aim to describe
the problem sensitivity and difficulty with various Reynolds number, ranging
from 10−2 to 104, and the consequent behaviour and performances of the iter-
ative solvers used. The tests we next discuss involve the modelling of flows at
millimetric and micrometric scales, characterized by low Reynolds number (typ-
ically Re≪ 1), but also flows at moderate-high Reynolds number, characterized
by a turbulent motion. In both cases we experiment a wide range of Atwood
numbers. As the fluid is more viscous Re→ 0, and its dynamic tends to that of

106

a rigid body. On the other hand, the fluid becomes heavier and heavier when
the Atwood number grows. These situations lead to significant differences in
the matrices describing the problem.

6.5.1 Test environment

The computations are performed on a NVIDIA graphic card GeForce GTX
1060 with 2560 CUDA cores and two other more performing GPUs, namely
a Tesla V100 with 5120 CUDA cores and a Titan Xp with 3840 CUDA cores.
Computations have sometimes been repeated on different GPUs, giving absolute
timings quite different, due to the different computing power of the boards, but
confirming the conclusions given in this chapter. Comparing the different boards
is outside of the scope of this work, but using different GPUs we further verified
that the results are independent from the choice of GPU. The kernels are written
in CUDA language [109], and NVIDIA libraries CUBLAS [110] and CUSPARSE
[111] for dense and sparse parallel linear algebra are used. All computations are
performed in double precision arithmetic.

In this section we will focus on the solution of systems (6.30). The iterative
solver used is GMRES with restart parameter 30, the relative residual tolerance
is set to 10−10 and the maximum number of iterations is 3000. When not stated
otherwise, the triangular systems in the preconditioner application of LU-type
methods are solved with CUSPARSE direct solver based on level scheduling
[108]. CUSPARSE library is also used to compute ILU(0) decomposition. All
SITALU instances are initialized with an ILU(0) decomposition. If not stated
otherwise, the preconditioner is updated at every time step. In what follows
only 3 sweeps of Jacobi and block Jacobi methods are applied in the solution of
triangular systems, resulting in a satisfactory preconditioning efficiency in most
cases.

6.5.2 Convergence tests

First, we test the parallelized algorithm on a problem with a known analytical
solution [85] ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρex(t, r, θ) = ρ1(r, θ − sin t),

uex(t, x, y) =

(︄
−y cos t
x cos t

)︄
,

pex(t, x, y) = sinx sin y sin t,

(6.38)

where (r, θ) are the polar coordinates on R2, and ρ1(r, α) in an arbitrary func-
tion. Here, we used ρ1(r, α) = 2 + r cosα, thus the density field in Carte-
sian coordinates becomes ρex(t, x, y) = 2 + cos(sin t)x + sin(sin t)y. The fields
ρex(t, x, y) and uex(t, x, y) satisfy the mass conservation equation identically and
uex(t, x, y) is solenoidal. The momentum equation is automatically satisfied by
the body force defined by

107

fex(t, x, y) =

(︃
(y sin t− x cos2 t)ρex(t, x, y) + cosx sin y sin t
−(x sin t+ y cos2 t)ρex(t, x, y) + sinx cos y sin t

)︃
.

We solve the Navier-Stokes equations (6.36) on the square

Ω =
{︁
(x, y) ∈ R2 : |x| < 1, |y| < 1

}︁
.

We solve the above mentioned problem up to T = 1. Following [35], the time
step is chosen as ∆t = h3/2, where the meshsize h is chosen small enough so that
the consistency error in space is significantly smaller than that in time. For the
velocity and the pressure, the errors are respectively evaluated using the usual
L2(Ω) norms ∥uex−uh∥2 and ∥pex−ph∥2. For the density, the error is evaluated
with the usual L1(Ω) norm ∥ρex − ρ̃h∥, where ρ̃h is a P1 reconstruction of the
FV density obtained with the procedure described in [35]. We plot in Figure 6.4
the error on the velocity, pressure and density. It shows the maximum error in
time evaluated in L2(Ω) (for velocity and pressure) or L1(Ω) (for density) norm
with respect to the meshsize h. The lines corresponding to a rate of convergence
of order two (Slope 2) and order three halves (Slope 3

2) are also displayed.

10−2 10−1

h

10−8

10−6

10−4

10−2

100

102

104

Er
ro
r

Velocity
Pressure
Density
Slope 3/2
Slope 2

Figure 6.4: Rates of convergence.

As we see, the time discretization error is second order for the velocity field
and slightly less for the density. The error on the pressure is of order 3

2 , rather
than second order, in fact the boundary of the domain is not smooth but only
piecewise smooth, according to [86].

108

6.5.3 Dual-fluid flow

We now illustrate the performances of the methods presented on a realistic
problem. Two fluids occupy the rectangular domain Ω = (−d/2, d/2)×(−2d, 2d)
and they are initially at rest with the heavier one superposed to the lighter one.
A downward gravitational field acts on the flow. We are interested in the study of
a large range of Reynolds number, varying from 10−2 to 104. This test models a
Rayleigh-Taylor instability with medium-high Reynolds number, while with low
and very low Reynolds number it describes a bi-fluid laminar flow, characterized
by small velocities and high viscosity, typical in microfluidics applications. The
interface between the fluids is expressed by the initial condition

ρ0(x, y) =
ρmax + ρmin

2
+

ρmax − ρmin

2
tanh

(︃
y − η cos(2πx/d)

0.01d

)︃
, (6.39)

where ρmin, ρmax > 0 are the densities of the light and heavy fluid respectively,
and η > 0 is the amplitude of the initial perturbation. The Atwood number is
then

At =
ρmax − ρmin

ρmax + ρmin
, (6.40)

and it expresses the density ratio between the two fluids. The right hand side
of the momentum equation is equal to ρg, where g is a vertical downward
gravitational field of magnitude G. Navier-Stokes equations have been adimen-
sionalized with the reference values ρmin for the density, d for lengths,

√
dG for

time. Then Reynolds number is defined as Re = ρmind
3/2G1/2/µ. The problem

is supplemented with no-slip boundary conditions on the horizontal boundaries
and symmetry is imposed on the two vertical sides

horizontal boundary u = 0, v = 0,

vertical boundary u = 0, ∂xv = 0,
(6.41)

where the velocity was written in components u = (u, v). Figure 6.5 shows
how the condition number of the matrix of the linear system (6.30) changes in
function of the Reynolds number for different values of the density ratio on a
uniform mesh 10 × 40. The problem’s ill-conditioning looks to reach a satura-
tion level at both extremes of Reynolds number, being the condition number at
low Re higher then the respective value at high Re. Notice that the condition
number at low Reynolds number reaches the same values for both low Atwood
number (Figure 6.5a) and high Atwood number (Figure 6.5b), while at high
Reynolds number the condition number increases as the density ratio grows.
As wee see, a simple diagonal preconditioner can reduce the ill-conditioning at
high Reynolds number, independently from the density ratio, while it has no
effect at low Reynolds number. For what concerns ILU(0) preconditioner, its
effectiveness is much stronger at high Reynolds number, but it still performs
well at low Reynolds number. Finally, the SITALU(1) preconditioner performs
as well as ILU(0), meaning that it achieves its optimal behaviour. Beside the

109

0.001 0.01 0.1 1 10 100 1000 10000
Reynolds number (Re)

100

101

102

103

104

105

106

107

Co
nd

iti
on

 n
um

be
r

No preconditioner
Diagonal
ILU(0)
SITALU(1)

(a) Density ratio 3.

0.001 0.01 0.1 1 10 100 1000 10000
Reynolds number (Re)

100

101

102

103

104

105

106

107

Co
nd

iti
on

 n
um

be
r

No preconditioner
Diagonal
ILU(0)
SITALU(1)

(b) Density ratio 19.

Figure 6.5: Condition number in function of the Reynolds number at different
density ratios.

condition number, it is known that clustering eigenvalues also affects GMRES
convergence [95]. Figure 6.6 shows the distribution of the eigenvalues of the
matrix without preconditioning (Figure 6.6a), with the diagonal preconditioner
(Figure 6.6b) and with the SITALU(1) preconditioner (Figure 6.6c). The test
case here considered has density ratio 3 and Reynolds number Re = 0.01 on
a uniform mesh 10 × 40. The matrix without preconditioner has no cluster of
eigenvalues (Figure 6.6a). The matrix after the application of a simple diagonal
preconditioner has a significantly smaller spectral radius (Figure 6.6b). How-

110

ever, this preconditioning technique is effective in scaling the eigenvalues, but
fails in clustering. On the other hand, the matrix coupled with the SITALU(1)
preconditioner has a cluster close to one (Figure 6.6c), improving the conver-
gence of Krylov subspace methods. In the following, different tests are per-

0 250 500 750 1000 1250 1500

0

200

400

600

800

1000

(a) No preconditioner.

0 250 500 750 1000 1250 1500

0.0

0.5

1.0

1.5

2.0

(b) Diagonal preconditioner.

0 250 500 750 1000 1250 1500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c) SITALU(1) preconditioner.

Figure 6.6: Distribution of the eigenvalues with different preconditioners.

formed in order to measure the efficiency of each method presented in terms
of number of iterations to convergence and execution times. It turns out that
the iterative solution of triangular systems is crucial to get an overall significant
time saving and a competitive time-to-solution. In fact, the execution times
for ILU(0) and ITALU(1) preconditioners are badly inflated because of the di-
rect solution of triangular systems by level-scheduling technique, resulting in
completely uncompetitive performances, thus the computation times for these
methods are not shown in the figures below. However, Table 6.4 shows the mean
performances of ILU(0) and ITALU(1) preconditioners in relation to the other
methods investigated on the dual-fluid low test case with density ratio 3 on a
uniform mesh 30 × 240. In particular, we list the mean number of iterations
required by GMRES for convergence (Avg. iter. number) and mean execution
times in seconds for solving the linear system and updating the preconditioner
(Avg. sol. time (s)). For each case, the reported numbers are average values

111

over T = 4.0. The minimum time is highlighted in bold.

6.5.3.1 About matrix blocking

As pointed out in Section 6.1.2, blocking may improve the robustness of Jacobi
solvers for incomplete factors, but it highly depends on the chosen structure
of the block diagonal matrix and on the norm of the inverses of such diago-
nal blocks. In the present work, the sparsity pattern of the matrices arising in
the dual-fluid flow simulation is shown in Figure 6.7a, while Figure 6.7b shows
the outcoming pattern after applying RCM algorithm. As we see, RCM or-
dered pattern clearly reveals to be somehow regular and the matrix entries are
grouped in three narrow bands, therefore we choose to extract a block structure
in correspondence of the diagonal band, as shown in Figure 6.7c.

0 200 400 600 800 1000
0

200

400

600

800

1000

(a) Natural ordering.

0 200 400 600 800 1000
0

200

400

600

800

1000

(b) RCM ordering.

0 20 40 60 80
0

20

40

60

80

(c) Matrix blocking, detail.

Figure 6.7: Sparsity patterns.

Let us denote by B the diagonal band shown in Figure 6.7b. Then the
heuristic algorithm used is the following

112

Algorithm 15 Matrix blocking

Inputs: B
Outputs: S

1: s, r = 0
2: repeat
3: while the r-th row of tril(B) has more than 2 non zero entries do
4: r = r + 1;
5: end while
6: for (i, j) ∈ S s.t. s ≤ i ≤ r do
7: if j < s or j > r then
8: Delete (i, j)
9: end if

10: end for
11: s = r + 1
12: until all rows have been processed

Note that the algorithm above maximizes the size of the extracted diagonal
blocks within the diagonal band B. We specify that this choice does not take
into account the magnitude of the matrix entries and thus it may not be the most
efficient one. When natural ordering is used, the blocking should be chosen such
that pressure and velocity variables at a grid point form a block. However, such a
blocking is not possible when RCM is used. For a general sparse matrix, finding
the optimal blocking is not an easy task and this should be done according
to the matrix structure. It is outside the scope of the present work to give
an exhaustive treatment to this issue. For completeness, we limit ourselves to
briefly mention some of the most common blocking techniques. The simplest
way to impose such a blocking is to divide the rows into the requested number of
blocks such that each block contains (approximately) the same number of rows.
Other techniques are based of graph partitioning, such as nested dissection [78]
or supervariable blocking [49]. Another possibility, in contrast with traditional
bandwidth reduction techniques, consists in taking into account the magnitude
of the matrix entries, bringing the heaviest elements closer to the diagonal, see
[104].

6.5.3.2 At low Reynolds number

We investigate the dual fluid flow dominated by viscous effects, i.e. we have
Re≪ 1, for a wide range of Atwood numbers. The computations are performed
on a uniform mesh 30 × 240, see Table 6.3. For the initial condition we set
η = 0.1. The time evolution of the density field at density ratio 100 (ρmax = 100,
ρmin = 1 and At ≈ 0.98) and Reynolds number Re = 10−2 is shown in Figure 6.8
at times 1.0, 25.0, 50.0, 75.0, 100.0, 125.0, 150.0, 175.0 and 200.0. The motion of
the fluid is very slow due to the high viscosity induced by the very small Reynolds
number. In such case, the Atwood number does not affect the difficulty of the
simulation, but only the rate of the motion, which is indeed faster when the

113

superposed fluid is significantly heavier. Anyway the small Reynolds number
prevents the numerical velocity to reach high values.

Figure 6.9 shows the iteration number needed by GMRES to converge (Fig-
ure 6.9a) and the corresponding execution time (Figure 6.9b) per time step.
The diagonal preconditioner is ineffective in this case and do not allow GM-
RES to converge, therefore it is not shown in Figure 6.9. ILU(0) precondi-
tioner is still effective, even if the iteration number is high. In this test set-
tings, SITALU(1) (one iteration of the SITALU algorithm) is sufficient to get
the same performances of an ILU(0) decomposition. Figure 6.9b shows that
SITALU(1)+Jacobi(3) is the fastest time-to-solution method. The performance
of SITALU(1)+block-Jacobi(3) is worst than its scalar counterpart, probably
because the norm of the off-diagonal blocks is not small enough. This behaviour
however depends on the Reynolds number: as it grows, block Jacobi gains ac-
curacy against scalar Jacobi (see Table 6.4). In these settings, it is possible

−0.5 0.5

−0.4

−0.2

0.0

0.2

0.4

T = 1.0

−0.5 0.5

T = 25.0

−0.5 0.5

T = 50.0

−0.5 0.5

T = 75.0

−0.5 0.5

T = 100.0

−0.5 0.5

T = 125.0

−0.5 0.5

T = 150.0

−0.5 0.5

T = 175.0

−0.5 0.5

T = 200.0

Figure 6.8: Evolution of the density contours 40.0 ≤ ρ ≤ 60.0, density ratio 100,
Reynolds number Re = 0.01.

to reuse the preconditioner instead of performing an update at each time step.
Table 6.2 summarizes the performance of different updating strategies for the
ILU preconditioner: for each of the methods listed, it is shown the mean num-
ber of iterations required by GMRES for convergence (Avg. iter. number) and
mean execution times in seconds for solving the linear system and updating the

114

(a) Iteration number per time step.

(b) Execution time per time step.

Figure 6.9: Iteration number and execution times, density ratio 100, Reynolds
number Re = 0.01.

preconditioner (Avg. sol. time (s)) per time step when the preconditioner is up-
dated every k time steps. The stated values are average values over a simulation
up to the physical time T = 4.0. The number of iterations required by GMRES
slightly grows with k, but the execution times do not shorten, confirming that
the SITALU implementation here provided is indeed inexpensive. Moreover,
increasing the number of iterations of SITALU do not prevent the growth of
GMRES iterations.

115

Preconditioner k Avg. iter. number Avg. sol. time (s)

SITALU(1) 2 216.30 0.3840
SITALU(1) 3 216.33 0.3849
SITALU(1) 4 216.30 0.3949
SITALU(1)+Jacobi(3) 2 239.64 0.2730
SITALU(1)+Jacobi(3) 3 239.65 0.2733
SITALU(1)+Jacobi(3) 4 239.66 0.2739

Table 6.1: Performance of different updates of ILU preconditioner, density ratio
100, Reynolds number Re = 0.01.

6.5.3.3 At moderate and high Reynolds number

We now focus on the study of the convection-dominated case, i.e. Re ≫ 1, for
a wide range of Atwood numbers. This is the case of the well known Rayleigh-
Taylor instability [139]. The computations are performed on a uniform mesh
50×440, see Table 6.3. The time evolution of the density field at density ratio 3
(ρmax = 3, ρmin = 1 and At = 0.5) and Reynolds number Re = 20000 is shown
in Figure 6.10 at times 1.0, 1.5, 2.0, 2.5, 3.0, 3.25, 3.5, 3.75 and 4.0. Some
spurious vortices seem to start near the vertical boundary for T ≥ 2 and they
obviously grow with time, as already noticed in [35]. This would require some
form of stabilization, e.g. streamline-upwind/Petrov-Galerkin (SUPG) [30] or
subgrid methods [88].

Figure 6.11 shows the evolution in time of the iteration number for con-
vergence and the corresponding execution times. Being particularly suited for
parallel computation, the diagonal preconditioner performs well for what con-
cerns the execution time despite a higher iteration number for convergence with
respect to LU-type preconditioners. Figure 6.11a shows that LU-type precon-
ditioners (ILU(0), SITALU(1), SITALU(1)+Jacobi(3) and SITALU(1)+block-
Jacobi(3)) lead to the same convergence rate of GMRES on this test. The
execution times in Figure 6.11b shows that SITALU(1)+Jacobi(3) outperforms
the other methods. The diagonal preconditioner’s performances get worst when
T ≥ 1.5, this phenomenon is due to the fact the difficulty of the simulation grows
as the interface between the fluids starts to show turbulence whirlpools more
and more complex. SITALU(1)+block-Jacobi(3) is clearly affected by direct
triangular solve at each iteration, therefore its time performance are poorer re-
spect to SITALU(1)+Jacobi(3). The results are similar if we choose a moderate
Reynolds number, e.g. Re = 1000 or Re = 5000.

Table 6.2 summarizes the performance of different updating strategies for
the ILU preconditioner: for each of the methods listed, it is shown the mean
number of iterations required by GMRES for convergence (Avg. iter. number)
and mean execution times in seconds for solving the linear system and updating
the preconditioner (Avg. sol. time (s)) per time step when the preconditioner is
updated every k time steps. The stated values are average values over a simula-

116

−0.5 0.5

−0.4

−0.2

0.0

0.2

0.4

T = 1.0

−0.5 0.5

T = 1.5

−0.5 0.5

T = 2.0

−0.5 0.5

T = 2.5

−0.5 0.5

T = 3.0

−0.5 0.5

T = 3.25

−0.5 0.5

T = 3.5

−0.5 0.5

T = 3.75

−0.5 0.5

T = 4.0

Figure 6.10: Evolution of the density contours 1.4 ≤ ρ ≤ 1.6, density ratio 3,
Reynolds number Re = 20000.

tion up to the physical time T = 4.0. Again, the number of iterations required
by GMRES slightly grows with k, and the execution times stay approximately
unchanged. As in the low Reynolds number case, increasing the number of
iterations of SITALU do not prevent the growth of GMRES iterations.

Figure 6.12 shows the time evolution of the density field at density ratio 19
(ρmax = 19, ρmin = 1 and At = 0.9) and Reynolds number Re = 1000 at times
1.0, 1.5, 2.0, 2.5, 3.0, 3.25 3.5 and 3.75. The results are qualitatively similar
to those in [35]. As the density ratio grows, for T ≥ 3.5 we can observe the
appearance of a peak in the iteration number highlighted by a dashed line in
Figure 6.13. This behaviour exposes an instability phenomenon related to the
physics of this problem: the high density ratio and the high Reynolds number
together make the heavier fluid reach the bottom of the domain with particularly
high velocity. As a consequence, the pressure gradient reaches high values in
correspondence of the interface, see Figure 6.14b. Indeed, the instability is also
revealed by the evolution in time of the divergence of the velocity field, which
explodes just in correspondence of the impact. Notice that the divergence is
non-zero even before the heavier fluid reaches the bottom: this is typical of
projection schemes (see [84] for an overview), where the end-of-step divergence
free velocity is eliminated and only an intermediate velocity field needs to be

117

(a) Iteration number per time step.

(b) Execution time per time step.

Figure 6.11: Iteration number and execution times, 3, Reynolds number Re =
20000.

computed. LU-type preconditioners with direct solution of triangular systems
(here ILU(0) and SITALU(1)) don’t seem to be affected, while iterative methods
are significantly more sensitive: indeed, SITALU(1)+Jacobi(3) fails to make
GMRES converge around the peak and the solution explodes. In such a case,
restarting the preconditioner by recomputing an ILU(0) decomposition from
scratch does not solve the instability. Instead, we restore the convergence of
GMRES by increasing STALU iterations, e.g. using SITALU(5)+Jacobi(3).
Anyway, increasing the number of iterations also implies an additional time

118

Preconditioner k Avg. iter. number Avg. sol. time (s)

SITALU(1) 2 17.1 0.3900
SITALU(1) 3 17.2 0.3890
SITALU(1) 4 17.5 0.3952
SITALU(1)+Jacobi(3) 2 18.3 0.0770
SITALU(1)+Jacobi(3) 3 18.4 0.0769
SITALU(1)+Jacobi(3) 4 18.7 0.0776

Table 6.2: Performance of different updates of ILU preconditioner, density ratio
3, Reynolds number Re = 20000.

cost, making the method loose its gain against the diagonal preconditioner, as
shown in Figure 6.13b. As one can expect, in this case is is not possible to reuse
the preconditioner, even if additional iterations of SITALU are performed.

−0.5 0.5

−0.4

−0.2

0.0

0.2

0.4

T = 1.0

−0.5 0.5

T = 1.5

−0.5 0.5

T = 2.0

−0.5 0.5

T = 2.5

−0.5 0.5

T = 2.75

−0.5 0.5

T = 3.0

−0.5 0.5

T = 3.25

−0.5 0.5

T = 3.5

−0.5 0.5

T = 3.75

Figure 6.12: Evolution of the density contours 8.0 ≤ ρ ≤ 12.0, density ratio 19,
Reynolds number Re = 1000.

In order to better understand the problem, Figure 6.15 shows the evolu-
tion of the minimum and maximum singular values (denoted as sigma min and
sigma max resp.) of the L and U factors updated with SITALU(1) (Figure 6.15a)

119

(a) Iteration number per time step.

(b) Execution time per time step.

Figure 6.13: Iteration number and execution times, density ratio 19, Reynolds
number Re = 1000.

and SITALU(5) (Figure 6.15b). As we see, the minimum singular values of the
L and U factors updated with SITALU(1) oscillate in a spurious way until the
solution explodes. Some additional iteration of SITALU can reduce the ampli-
tude of the oscillations. This instability phenomenon is known in dual fluid flow
simulations: Coppola-Owen and Codina [50], for instance, proposed to enrich
the finite element approximation space for the pressure, in order to enable the
pressure gradient to be discontinuous at the interface.

120

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Di
ve

rg
en

ce

(a) Evolution of the divergence of the velocity field.

(b) Pressure field.

Figure 6.14: Instability phenomenon, density ratio 19, Reynolds number Re =
1000.

6.5.4 Tradeoff between accuracy and efficiency

In the previous section we tried to investigate the interplay between the Reynolds
and Atwood numbers, two adimensional quantities that govern the main phys-
ical behaviour in the density dependent Navier-Stokes problem. In order to
better estimate the performance of each method in relation to the physics of
this problem, we test the SITALU algorithm on the analytical solution (6.38)
at different Reynolds and Atwood numbers. In order to make the Atwood num-

121

3.700 3.705 3.710 3.715 3.720
Time

10−6

10−5

10−4

10−3

10−2

10−1

100

101

sigma_min L
sigma_max L
sigma_min U
sigma_max U

(a) SITALU(1) preconditioner.

3.70 3.72 3.74 3.76 3.78 3.80 3.82
Time

10−6

10−5

10−4

10−3

10−2

10−1

100

101

sigma_min L
sigma_max L
sigma_min U
sigma_max U

(b) SITALU(5) preconditioner.

Figure 6.15: Evolution in time of the minimum singular and maximum singular
values of the factors of the updated ILU preconditioner.

ber significantly change, we choose ρ1(r, α) = 2 + r cosα + Ce(−r2), where C
is a constant. The density field in Cartesian coordinates becomes ρex(t, x, y) =

2 + cos(sin t)x + sin(sin t)y + Ce(−x2−y2) and it verifies the mass conservation
equation together with the velocity field defined in (6.38). The momentum
equation is verified as well. In these test we measure the maximum error in
time over T = 1, using L2 norm for velocity and pressure and L1 norm for the
density. The spatial discretization is chosen fine enough so that the consistency
error in space is significantly smaller than that in time.

122

Mesh Mesh size (h) Time step (∆t) Triangles P2 nodes (Nu) P1 nodes (Np)

10× 40 0.1 0.0316 800 1701 451
20× 140 0.05 0.0112 5600 11521 2961
30× 240 0.033 0.0061 14400 29341 7471
40× 340 0.025 0.0040 27200 55161 13981
50× 440 0.028 0.0029 44000 88981 22491

Table 6.3: Mesh properties.

Table 6.5 shows the mean number of iterations required by GMRES for
convergence (Avg. iter. number) and mean execution times in seconds for
solving the linear system and updating the preconditioner (Avg. sol. time (s))
per time step, and the maximum error in time (Error (u, p, ρ)) at different values
of Reynolds number. For each case the reported numbers are average values
over T = 1.0. We set C = 0.0, corresponding to At = 0.5. The simulation is
performed on a uniform mesh 128× 128 on Ω = [−1, 1]2. The errors are clearly
independent from the method used, as well as from the Reynolds number.

Table 6.6 shows the mean number of iterations required by GMRES for
convergence (Avg. iter. number) and mean execution times in seconds for
solving the linear system and updating the preconditioner (Avg. sol. time (s))
per time step, and the maximum error in time (Error (u, p, ρ)) at different values
of Atwood number. For each case the reported numbers are average values over
T = 1.0. Here the Reynolds number is Re = 1, and the simulation is performed
on a uniform mesh 128×128 on Ω = [−1, 1]2. Again, the errors are independent
from the method used and from the Atwood number.

6.6 Summary

In the present work we have explored the applicability and efficiency of Jacobi
iterative methods applied to the solution of sparse triangular systems arising
from the incrementally updated ILU decomposition for the parallel simulation
of the variable density Navier-Stokes system. It turns out that a fully iterative
approximation of an ILU preconditioner is able to get the best performance on
a highly parallel architecture like a GPU. We have choosen a fixed number of
sweeps for Jacobi and block Jacobi, based on a quite long sperimentation. This
choice is indeed advantageous, as the preconditioner is then a fixed operator
and a flexible solver, e.g. FGMRES [121], is not needed. Alternatively, with
a flexible solver the number of sweeps could be adjusted dynamically: for in-
stance, the number of Jacobi sweeps for each approximate triangular solve could
be tuned on the residual norm reduction of each Krylov iteration.
The SITALU algorithm turns out to be an efficient method for updating an ILU
decomposition and the implementation provided is very inexpensive. Recom-
puting from scratch is costly and often not needed, furthermore it is not a cure
for instabilities. For what concerns the update schedule, it is possible to reuse

123

the same preconditioner without updating it at each time step, but it leads to
a slight increase in the number of iteration of GMRES with no global benefit to
the execution times.

The SITALU technique coupled with Jacobi methods is a flexible fully itera-
tive algorithm for the update and the application of ILU preconditioners within
highly parallel computers.

124

Algorithm 14 Residual matrix computation

1: Let dataA be the data array of A.
2: Let dataM be the data array of M .
3: Let indices be the common indices array.
4: Let indptr be the common indptr array.
5: Let s dataR be the auxiliary shared array containing the data array of R.
6: Let s dataM be the auxiliary shared array containing the data array of M .
7: Let s indices be the auxiliary shared array containing the indices array.
8: Let valL be the shared array of index of currently processed entry of L.
9: Let rowU be the shared array of index of currently processed row of U .

10: Let dataR be the data array of R.
11: Let w id be the global warp index.
12: Let l id be the local thread index within its warp.
13: Let val be the value of the element of tril(M) assigned to each thread.
14: Let col be the column index of the entry of tril(M) assigned to each thread.
15: Let nnz be the number of entries in the row w id that lie in tril(M).
16: s dataR ← dataA[indptr[w id] : indptr[w id+ 1]] ▷ Each warp loads in

shared its row
17: s dataM ← dataM[indptr[w id] : indptr[w id+ 1]]
18: s indices← indices[indptr[w id] : indptr[w id+ 1]]
19: if s indices[s indptr[w id] + id] < w id then
20: val = s dataM[s indptr[w id] + l id]
21: col = s indices[s indptr[w id] + l id]
22: else if s indices[s indptr[w id] + l id] == w id then
23: val = 1, col = w id
24: else
25: val = 0, col = −1
26: end if
27: for i = 0, . . . , nnz − 1 do ▷ Each warp loops over Itril(M)(w id)
28: if l id == i then
29: valL[w id]← v, rowU[w id]← s indices[s indptr[w id] + l id]
30: end if
31: s dataM ← dataM[indptr[rowU[w id]] ▷ Each warp loads shared

index
32: s indices← indices[indptr[rowU[w id]]
33: k = l id
34: while there are unread values in rowU do
35: index = s indices[s indptr[w id] + k]
36: if index ≥ rowU[w id] and index == col then
37: s dataA[s indptr[w id] + l id]− = valL[w id] ∗

s dataM[s indptr[w id] + k]
38: end if
39: k = k + 1
40: end while
41: end for
42: dataR[indptr[w id] : indptr[w id+ 1]]← s dataR ▷ Each warp copies in

global the result

125

Re Preconditioner Avg. iter. number Avg. sol. time (s)

0.01 Diagonal - -
ILU(0) 248.5 5.800
ITALU(1) 248.5 5.449
ITALU(1) + Jacobi(3) 273.0 0.915
ITALU(1) + block Jacobi(3) 309.0 1.289

0.025 Diagonal - -
ILU(0) 218.0 4.239
ITALU(1) 218.0 3.883
ITALU(1) + Jacobi(3) 250.0 0.658
ITALU(1) + block Jacobi(3) 283.0 1.006

0.05 Diagonal 909.7 1.790
ILU(0) 199.0 3.508
ITALU(1) 199.0 3.153
ITALU(1) + Jacobi(3) 226.0 0.523
ITALU(1) + block Jacobi(3) 248.0 0.788

0.1 Diagonal 791.1 1.233
ILU(0) 173.0 2.777
ITALU(1) 173.0 2.424
ITALU(1) + Jacobi(3) 196.0 0.401
ITALU(1) + block Jacobi(3) 201.0 0.591

1 Diagonal 301.1 0.330
ILU(0) 72.0 1.249
ITALU(1) 72.0 0.893
ITALU(1) + Jacobi(3) 81.0 0.146
ITALU(1) + block Jacobi(3) 84.0 0.218

10 Diagonal 96.4 0.099
ILU(0) 25.9 0.670
ITALU(1) 25.9 0.313
ITALU(1) + Jacobi(3) 29.0 0.052
ITALU(1) + block Jacobi(3) 29.0 0.075

100 Diagonal 38.7 0.040
ILU(0) 10.8 0.490
ITALU(1) 10.8 0.134
ITALU(1) + Jacobi(3) 11.5 0.020
ITALU(1) + block Jacobi(3) 11.0 0.026

1000 Diagonal 44.4 0.047
ILU(0) 13.8 0.523
ITALU(1) 13.8 0.166
ITALU(1) + Jacobi(3) 14.1 0.023
ITALU(1) + block Jacobi(3) 13.8 0.033

Table 6.4: Performance of the preconditioners on the dual-flow at different
Reynolds number.

126

Re Preconditioner Avg. iter. number Avg. sol. time (s) Error (u, p, ρ)

0.01 ITALU(1) 379.4 4.160 (2.99e-6, 1.76e-3, 8.72e-5)
ITALU(1) + Jacobi(3) 440.0 1.356 (2.99e-6, 1.76e-3, 8.72e-5)
ITALU(1) + block Jacobi(3) 389.9 4.967 (2.99e-6, 1.76e-3, 8.72e-5)

0.1 ITALU(1) 156.7 1.727 (6.66e-6, 5.15e-4, 9.10e-5)
ITALU(1) + Jacobi(3) 168.7 0.541 (6.66e-6, 5.15e-4, 9.10e-5)
ITALU(1) + block Jacobi(3) 159.4 2.025 (6.66e-6, 5.15e-4, 9.10e-5)

1 ITALU(1) 62.6 0.693 (7.20e-6, 5.26e-4, 8.95e-5)
ITALU(1) + Jacobi(3) 68.0 0.220 (7.20e-6, 5.26e-4, 8.95e-5)
ITALU(1) + block Jacobi(3) 64.0 0.820 (7.20e-6, 5.26e-4, 8.95e-5)

10 ITALU(1) 24.0 0.264 (7.16e-6, 6.20e-4, 8.90e-5)
ITALU(1) + Jacobi(3) 25.3 0.082 (7.16e-6, 6.20e-4, 8.90e-5)
ITALU(1) + block Jacobi(3) 24.2 0.310 (7.16e-6, 6.20e-4, 8.90e-5)

100 ITALU(1) 10.7 0.121 (1.25e-5, 6.45e-4, 8.82e-5)
ITALU(1) + Jacobi(3) 10.9 0.035 (1.25e-5, 6.45e-4, 8.82e-5)
ITALU(1) + block Jacobi(3) 10.7 0.142 (1.25e-5, 6.45e-4, 8.82e-5)

1000 ITALU(1) 13.6 0.151 (4.99e-5, 6.52e-4, 8.81e-5)
ITALU(1) + Jacobi(3) 14.0 0.044 (4.99e-5, 6.52e-4, 8.81e-5)
ITALU(1) + block Jacobi(3) 13.6 0.177 (4.99e-5, 6.52e-4, 8.81e-5)

Table 6.5: Performance of the preconditioners on the analytical solution at
different Reynolds numbers.

At (C) Preconditioner Avg. iter. number Avg. sol. time (s) Error (u, p, ρ)

0.71 (20) ITALU(1) 27.9 0.309 (2.32e-5, 9.42e-2, 2.31e-4)
ITALU(1) + Jacobi(3) 30.0 0.100 (2.32e-5, 9.42e-2, 2.31e-4)
ITALU(1) + block Jacobi(3) 28.0 0.357 (2.32e-5, 9.42e-2, 2.31e-4)

0.67 (10) ITALU(1) 35.0 0.235 (1.58e-5, 7.35e-2, 1.99e-4)
ITALU(1) + Jacobi(3) 37.4 0.121 (1.58e-5, 7.35e-2, 1.99e-4)
ITALU(1) + block Jacobi(3) 35.5 0.460 (1.58e-5, 7.35e-2, 1.99e-4)

0.61 (5) ITALU(1) 41.8 0.461 (1.01e-5, 6.25e-2, 1.52e-4)
ITALU(1) + Jacobi(3) 45.2 0.144 (1.01e-5, 6.25e-2, 1.52e-4)
ITALU(1) + block Jacobi(3) 42.7 0.55 (1.01e-5, 6.25e-2, 1.52e-4)

0.50 (0) ITALU(1) 62.6 0.693 (7.20e-6, 5.26e-4, 8.95e-5)
ITALU(1) + Jacobi(3) 68.0 0.220 (7.20e-6, 5.26e-4, 8.95e-5)
ITALU(1) + block Jacobi(3) 64.0 0.820 (7.20e-6, 5.26e-4, 8.95e-5)

Table 6.6: Performance of the preconditioners on the analytical solution at
different Atwood numbers.

127

Appendix A

dCATCH numerical
software

A.1 Introduction

In this appendix we present the numerical software package dCATCH [63] for
the computation of a d-variate near G-optimal polynomial regression design of
degree m on a finite design space X ⊂ Rd. In particular, it is the first software
package for general-purpose Tchakaloff-like compression of d-variate designs via
NonNegative Least Squares (NNLS), freely available on the Internet. The code
is an evolution of the codes in [25] (limited to d = 2, 3), with a number of
features tailored to higher dimension and large-scale computations. The key
ingredients are:

• use of d-variate Vandermonde-like matrices at X in a discrete orthogonal
polynomial basis (obtained by discrete orthonormalization of the total-
degree product Chebyshev basis of the minimal box containing X), with
automatic adaptation to the actual dimension of Pd

m(X);

• few tens of iterations of the basic Titterington multiplicative algorithm
until near G-optimality of the design is reached, with a checked G-efficiency
of say 95% (but with a design support still far from sparsity);

• Tchakaloff-like compression of the resulting near G-optimal design via
NNLS solution of the underdetermined moment system, with concentra-
tion of the discrete probability measure by sparse re-weighting to a support
strictly contained in X, of cardinality at most Pd

2m(X), keeping the same
G-efficiency;

• iterative solution of the large-scale NNLS problem by a new accelerated
version of the classical Lawson-Hanson active set algorithm, that we re-
cently introduced in [61] for d = 2 and d = 3 and here we validate on
higher dimensions.

128

Before giving a more detailed description of the algorithm, it is worth re-
calling in brief some basic notions of optimal design theory. Such a theory has
its roots and main applications within statistics, but also strong connections
with approximation theory. In statistics, a design is a probability measure µ
supported on a (discrete or continuous) compact set Ω ⊂ Rd. The search for
designs that optimize some properties of statistical estimators (optimal designs)
dates back to at least one century ago, and the relevant literature is so wide
and still actively growing and monographs and survey papers are abundant in
the literature. For readers interested in the evolution and state of the art of
this research field, we may quote, for example, two classical treatises such as in
[10, 116], the recent monograph [41] and the algorithmic survey [103], as well as
[52, 65, 137] and references therein. On the approximation theory side we may
quote, for example, [21, 24].

The present appendix is organized as follows—in Appendix A.2 we briefly
recall some basic concepts from the theory of Optimal Designs, for the reader’s
convenience, with special attention to the deterministic and approximation theo-
retic aspects. In Appendix A.3 we present in detail our computational approach
to near G-optimal d-variate designs via Caratheodory-Tchakaloff compression.
All the routines of the dCATCH software package here presented, are described.
In Appendix A.4 we show several numerical results with dimensions in the range
3–10 and a Conclusions section follows.

For the reader’s convenience we also display Table A.1 and Table A.2, de-
scribing the acronyms used in this appendix and the content (subroutine names)
of the dCATCH software package.

Table A.1: List of acronyms.

LS Least Squares
NNLS NonNegative Least Squares
LH Lawson-Hawson algorithm for NNLS
LHI Lawson-Hawson algorithm with unconstrained LS Initialization
LHDM Lawson-Hawson algorithm with Deviation Maximization pivoting

Table A.2: dCATCH package content.

dCATCH d-variate CAratheodory-TCHakaloff discrete measure compression
dCHEBVAND d-variate Chebyshev-Vandermonde matrix
dORTHVAND d-variate Vandermonde-like matrix in a weighted orthogonal polynomial basis
dNORD d-variate Near G-Optimal Regression Designs
LHDM Lawson-Hawson algorithm with Deviation Maximization pivoting

A.2 G-optimal designs

Let Pd
m(Ω) denote the space of d-variate real polynomials of total degree not

greater than n, restricted to a (discrete or continuous) compact set Ω ⊂ Rd,
and let µ be a design, that is, a probability measure, with supp(µ) ⊆ Ω. In

129

what follows we assume that supp(µ) is determining for Pd
m(Ω) [38], that is,

polynomials in Pd
m vanishing on supp(µ) vanish everywhere on Ω.

In the theory of optimal designs, a key role is played by the diagonal of
the reproducing kernel for µ in Pd

m(Ω) (also called the Christoffel polynomial of
degree m for µ)

Kµ
m(x,x) =

Nm∑︂
j=1

p2j (x) , Nm = dim(Pd
m(Ω)) , (A.1)

where {pj} is any µ-orthonormal basis of Pd
m(Ω). Recall that Kµ

m(x, x) can
be proved to be independent of the choice of the orthonormal basis. Indeed,
a relevant property is the following estimate of the L∞-norm in terms of the
L2
µ-norm of polynomials

∥p∥L∞(Ω) ≤
√︂

max
x∈Ω

Kµ
m(x,x) ∥p∥L2

µ(Ω) , ∀p ∈ Pd
m(Ω) . (A.2)

Now, by (A.1) and µ-orthonormality of the basis we get∫︂
Ω

Kµ
m(x,x) dµ =

Nm∑︂
j=1

∫︂
Ω

p2j (x) dµ = Nm , (A.3)

which entails that maxx∈Ω Kµ
m(x,x) ≥ Nm.

Then, a probability measure µ∗ = µ∗(Ω) is then called a G-optimal design
for polynomial regression of degree m on Ω if

min
µ

max
x∈Ω

Kµ
m(x,x) = max

x∈Ω
Kµ∗

m (x,x) = Nm . (A.4)

Observe that, since
∫︁
Ω
Kµ

m(x,x) dµ = Nm for every µ, an optimal design has
also the following property Kµ∗

m (x,x) = Nm, µ∗-a.e. in Ω.
Now, the well-known Kiefer-Wolfowitz General Equivalence Theorem [97]

(a cornerstone of optimal design theory), asserts that the difficult min-max
problem (A.4) is equivalent to the much simpler maximization problem

max
µ

det(Gµ
m) , Gµ

m =

(︃∫︂
Ω

ϕi(x)ϕj(x) dµ

)︃
1≤i,j≤Nm

,

where Gµ
m is the Gram matrix (or information matrix in statistics) of µ in a fixed

polynomial basis {ϕi} of Pd
m(Ω). Such an optimality is called D-optimality, and

ensures that an optimal measure always exists, since the set of Gram matrices
of probability measures is compact and convex; see for example, [24, 116] for a
general proof of these results, valid for continuous as well as for discrete compact
sets.

Notice that an optimal measure is neither unique nor necessarily discrete
(unless Ω is discrete itself). Nevertheless, the celebrated Tchakaloff Theorem
ensures the existence of a positive quadrature formula for integration in dµ∗ on

130

Ω, with cardinality not exceeding N2m = dim(Pd
2m(Ω)) and which is exact for all

polynomials in Pd
2m(Ω). Such a formula is then a design itself, and it generates

the same orthogonal polynomials and hence the same Christoffel polynomial of
µ∗, preserving G-optimality (see [117] for a proof of Tchakaloff theorem with
general measures).

We recall that G-optimality has two important interpretations in terms of
statistical and deterministic polynomial regression. From a statistical viewpoint,
it is the probability measure on Ω that minimizes the maximum prediction
variance by polynomial regression of degree m, cf. for example, [116]. On
the other hand, from an approximation theory viewpoint, if we call Lµ∗

m the
corresponding weighted least squares projection operator L∞(Ω) → Pd

m(Ω),
namely

∥f − Lµ∗
m f∥L2

µ∗ (Ω) = min
p∈Pd

m(Ω)
∥f − p∥L2

µ∗ (Ω) , (A.5)

by (A.2) we can write for every f ∈ L∞(Ω)

∥Lµ∗
m f∥L∞(Ω) ≤

√︂
max
x∈Ω

Kµ∗
m (x,x) ∥Lµ∗

m f∥L2
µ∗ (Ω) =

√︁
Nm ∥Lµ∗

m f∥L2
µ∗ (Ω)

≤
√︁

Nm ∥f∥L2
µ∗ (Ω) ≤

√︁
Nm ∥f∥L∞(Ω) ,

(where the second inequality comes from µ∗-orthogonality of the projection),
which gives

∥Lµ∗
m ∥ = sup

f ̸=0

∥Lµ∗
m f∥L∞(Ω)

∥f∥L∞(Ω)
≤
√︁

Nm , (A.6)

that is a G-optimal measure minimizes (the estimate of) the weighted least
squares uniform operator norm.

We stress that in this context we are interested in the fully discrete case of a
finite design space Ω = X, so that any design µ is identified by a set of positive
weights (masses) summing up to 1 and integrals are weighted sums.

A.3 Computing near G-optimal compressed de-
signs

Since in the present context we have a finite design space Ω = X = {x1, . . . ,xM} ⊂
Rd, we may think a design µ as a vector of nonnegative weights u = (u1, · · · , uM)
attached to the points, such that ∥u∥1 = 1 (the support of µ being identified
by the positive weights). Then, a G-optimal (or D-optimal) design µ∗ is rep-
resented by the corresponding nonnegative vector u∗. We write Ku

m(x,x) =
Kµ

m(x,x) for the Christoffel polynomial and similarly for other objects (spaces,
operators, matrices) corresponding to a discrete design. At the same time,
L∞(Ω) = ℓ∞(X), and L2

µ(Ω) = ℓ2u(X) (a weighted ℓ2 functional space on X)

with ∥f∥ℓ2u(X) =
(︂∑︁M

i=1 ui f
2(xi)

)︂1/2
.

131

In order to compute an approximation of the desired u∗, we resort to the
basic multiplicative algorithm proposed by Titterington in the ’70s (cf. [136]),
namely

u
(k+1)
i = u

(k)
i

Ku(k)

m (xi,xi)

Nm
, 1 ≤ i ≤M , k = 0, 1, 2, . . . , (A.7)

with initialization u(0) = (1/M, . . . , 1/M)T . Such an algorithm is known to be
convergent sublinearly to a D-optimal (or G-optimal by the Kiefer-Wolfowitz
Equivalence Theorem) design, with an increasing sequence of Gram determi-
nants

det(Gu(k)

m) = det(V T diag(u(k))V),

where V is a Vandermonde-like matrix in any fixed polynomial basis of Pd
m(X);

cf., for example, [103, 137]. Observe that u(k+1) is indeed a vector of positive

probability weights if such is u(k). In fact, the Christoffel polynomial Ku(k)

m is
positive on X, and calling µk the probability measure on X associated with

the weights u(k) we get immediately
∑︁

i u
(k+1)
i = 1

Nm

∑︁
i u

(k)
i Ku(k)

m (xi,xi) =
1

Nm

∫︁
X
Ku(k)

m (x,x) dµk = 1 by (A.3) in the discrete case Ω = X.
Our implementation of (A.7) is based on the functions

• C=dCHEBVAND(n,X),

• [U,jvec]=dORTHVAND(n,X,u,jvec),

• [pts,w]=dNORD(m,X,gtol).

Given the degree n and the initial point cloud represented by the two di-
mensional array X, the function dCHEBVAND computes the two dimensional array
C containing the d-variate Chebyshev-Vandermonde matrix C = (ϕj(xi)) ∈
RM×Nn , where {ϕj(x)} = {Tν1

(α1x1 + β1) . . . Tνd
(αdxd + βd)}, 0 ≤ νi ≤ n,

ν1 + · · · + νd ≤ n, is a suitably ordered total-degree product Chebyshev basis
of the minimal box [a1, b1] × · · · × [ad, bd] containing X, with αi = 2/(bi − ai),
βi = −(bi + ai)/(bi − ai). Here we have resorted to the codes in [32] for the
construction and enumeration of the required “monomial” degrees. Though the
initial basis is then orthogonalized, the choice of the Chebyshev basis is dictated
by the necessity of controlling the conditioning of the matrix. This would be
on the contrary extremely large with the standard monomial basis, already at
moderate regression degrees, preventing a successful orthogonalization.

Said u the array representing the probability weight vector u, the sec-
ond function dORTHVAND computes the two dimensional array U containing a
Vandermonde-like matrix in a u-orthogonal polynomial basis on X. This is ac-
complished essentially by numerical rank evaluation for C=dCHEBVAND(n,X) and
consequent thin QR factorization

diag(
√
u)C0 = QR , U = C0 R

−1 , (A.8)

132

where Q rectangular with orthogonal columns, R is an upper triangular non-
singular matrix and

√
u = (

√
u1, . . . ,

√
uM)T . The matrix C0 has full rank

and corresponds to a selection of the columns of C (i.e., of the original basis
polynomials) via QR with column pivoting, in such a way that these form a
basis of Pd

n(X), since rank(C) = dim(Pd
n(X)). A possible alternative, not yet

implemented, is the use of a rank-revealing QR factorization. The in-out pa-
rameter jvec allows to pass directly the column index vector corresponding to
a polynomial basis after a previous call to dORTHVAND with the same degree n,
avoiding numerical rank computation and allowing a simple “economy size” QR
factorization of the matrix diag(sqrt(u)) C(:,jvec).

Summarizing, U is a Vandermonde-like matrix for degree n on X in the
required u-orthogonal basis of Pd

n(X), that is

[p1(x), . . . , pNn
(x)] = [ϕj1(x), . . . , ϕjNn

(x)]R−1 , (A.9)

where jvec = (j1, . . . , jNn)
T is the multi-index jvec resulting from pivoting.

Indeed by (A.8) we can write the scalar product (ph, pk)ℓ2u(X) as

(ph, pk)ℓ2u(X) =

M∑︂
i=1

ui ph(xi) pk(xi) = (UT diag(u)U)hk = (QTQ)hk = δhk ,

for 1 ≤ h, k ≤ Nn, which shows orthonormality of the polynomial basis in (A.9).
We stress that rank(C) = dim(Pd

n(X)) could be strictly smaller than dim(Pd
n) =(︁

n+d
d

)︁
, when there are polynomials in Pd

n vanishing on X that do not vanish
everywhere. In other words, X lies on a lower-dimensional algebraic variety
(technically one says that X is not Pd

n-determining [38]). This certainly hap-
pens when |X| is too small, namely |X| < dim(Pd

n), but think for example also
to the case when d = 3 and X lies on the 2-sphere S2 (independently of its
cardinality), then we have dim(Pd

n(X)) ≤ dim(Pd
n(S

2)) = (n+1)2 < dim(P3
n) =

(n+ 1)(n+ 2)(n+ 3)/6.
Iteration (A.7) is implemented within the third function dNORD whose name

stands for d-dimensional Near G-Optimal Regression Designs, which calls dORTHVAND
with n = m. Near optimality is here twofold, namely it concerns both the con-
cept of G-efficiency of the design and the sparsity of the design support.

We recall that G-efficiency is the percentage of G-optimality reached by a
(discrete) design, measured by the ratio

Gm(u) =
Nm

maxx∈X Ku
m(x,x)

,

knowing that Gm(u) ≤ 1 by (A.3) in the discrete case Ω = X. Notice that
Gm(u) can be easily computed after the construction of the u-orthogonal Vandermonde-
like matrix U by dORTHVAND, as Gm(u) = Nm/(maxi ∥rowi(U)∥22) .

In the multiplicative algorithm (A.7), we then stop iterating when a given
threshold gtol of G-efficiency (the input parameter gtol in the call to dNORD) is
reached by u(k), since Gm(u(k)) → 1 as k → ∞, say for example Gm(u(k)) ≥

133

95% or Gm(u(k)) ≥ 99%. Since convergence is sublinear and in practice we see
that 1 − Gm(u(k)) = O(1/k), for a 90% G-efficiency the number of iterations
is typically in the tens, whereas it is in the hundreds for 99% one and in the
thousands for 99, 9%. When a G-efficiency very close to 1 is needed, one could
resort to more sophisticated multiplicative algorithms, see e.g. [65, 137].

In many applications however a G-efficiency of 90%–95% could be sufficient
(then we may speak of near G-optimality of the design), but though in princi-
ple the multiplicative algorithm converges to an optimal design µ∗ on X with
weights u∗ and cardinality Nm ≤ | supp(µ∗)| ≤ N2m, such a sparsity is far from
being reached after the iterations that guarantee near G-optimality, in the sense
that there is a still large percentage of non-negligible weights in the near optimal
design weight vector, say

u(k) such that Gm(u(k)) ≥ gtol . (A.10)

Following [26, 27], we can however effectively compute a design which has the

same G-efficiency of u(k) but a support with a cardinality not exceeding N2m =
dim(Pd

2m(X)), where in many applications N2m ≪ |X|, obtaining a remarkable
compression of the near optimal design.

The theoretical foundation is a generalized version [117] of Tchakaloff The-
orem [131] on positive quadratures, which asserts that for every measure on
a compact set Ω ⊂ Rd there exists an algebraic quadrature formula exact
on Pd

n(Ω)), with positive weights, nodes in Ω and cardinality not exceeding
Nn = dim(Pd

n(Ω).
In the present discrete case, that is, where the designs are defined on Ω = X,

this theorem implies that for every design µ on X there exists a design ν, whose
support is a subset of X, which is exact for integration in dµ on Pd

n(X). In
other words, the design ν has the same basis moments (indeed, for any basis of
Pd
n(Ω))∫︂

X

pj(x) dµ =

M∑︂
i=1

ui pj(xi) =

∫︂
X

pj(x) dν =

L∑︂
ℓ=1

wℓ pj(ξℓ) , 1 ≤ j ≤ Nn ,

where L ≤ Nn ≤ M , {ui} are the weights of µ, supp(ν) = {ξℓ} ⊆ X and {wℓ}
are the positive weights of ν. For L < M , which certainly holds if Nn < M , this
represents a compression of the design µ into the design ν, which is particularly
useful when Nn ≪M .

In matrix terms this can be seen as the fact that the underdetermined {pj}-
moment system

UT
n v = UT

n v (A.11)

has a nonnegative solution v = (v1, . . . , vM)T whose positive components, say
wℓ = viℓ , 1 ≤ ℓ ≤ L ≤ Nn, determine the support points {ξℓ} ⊆ X (for clarity
we indicate here by Un the matrix U computed by dORTHVAND at degree n).
This fact is indeed a consequence of the celebrated Caratheodory theorem on

134

conic combinations [40], asserting that a linear combination with nonnegative
coefficients of M vectors in RN with M > N can be re-written as linear positive
combination of at most N of them. So, we get the discrete version of Tchakaloff
theorem by applying Caratheodory theorem to the columns of UT

n in the system
(A.11), ensuring then existence of a nonnegative solution v with at most Nn

nonzero components.
In order to compute such a solution to (A.11) we choose the strategy based

on Quadratic Programming introduced in [128], namely on sparse solution of
the NonNegative Least Squares (NNLS) problem

v = argmin
z∈RM , z≥0

∥UT
n z− UT

n u∥22

by a new accelerated version of the classical Lawson-Hanson active-set method,
namely the Lawson-Hanson algorithm with deviation maximization pivoting
discussed in Chapter 4 and implemented by the function

• [x,resnorm,exitflag]=LHDM (A,b,options),

which solves the generic NNLS problem

min
x∈RM ,x≥0

∥Ax− b∥22

where A ∈ RN×M and b ∈ RN , with a Matlab implementation of the LHDM
Algorithm 6. The input variable options is a structure type object containing
the user parameters, for example, the aforementioned kmax and τ1, τ2, τθ. The
output parameter x is the least squares solution, resnorm is the squared 2-norm
of the residual and exitflag is set to 0 if the LHDM algorithm has reached the
maximum number of iterations without converging and 1 otherwise. In our
implementation, we call LHDM with A = U’ and b = U’*u. In the literature, an
accelerating technique was introduced by Van Benthem and Keenan [140], who
introduced a nontrivial initialization of the algorithm by means of unconstrained
least squares solution. In the following section we are going to compare such an
approach, whose Matlab implementation is briefly named LHI, and the Matlab
implementation lsqnonneg of the Lawson-Hanson algorithm, briesfly named LH

hereafter, with LHDM.
We observe that working with an orthogonal polynomial basis of Pd

n(X)
allows to deal with the well-conditioned matrix Un in the Lawson-Hanson algo-
rithm. The overall computational procedure is implemented by the function

• [pts,w,momerr]=dCATCH(n,X,u),

where dCATCH stands for d-variate CAratheodory-TCHakaloff discrete measure
compression. It works for any discrete measure on a discrete set X. Indeed,
it could be used, other than for design compression, also in the compression
of d-variate quadrature formulas, to give an example. The output array pts

contains a subset of points {ξℓ} ⊂ X which form the support of the compressed
measure, the array w is the vector w = {wℓ} = {viℓ > 0} of positive weights

135

(that we may call a d-variate near G-optimal Tchakaloff design) and last momerr
is the moment residual ∥UT

n v − UT
n u∥2.

In the present framework we call dCATCH with n = 2m and u = u(k), cf.
(A.10), that is, we solve

v = argmin
z∈RM , z≥0

∥UT
2mz− UT

2mu(k)∥22 . (A.12)

In such a way the compressed design generates the same scalar product of u(k)

in Pd
m(X), and hence the same orthogonal polynomials and the same Christoffel

function on X keeping thus invariant the G-efficiency

Pd
2m(X) ∋ Kv

m(x,x) = Ku(k)

m (x,x) ∀x ∈ X =⇒ Gm(v) = Gm(u(k)) ≥ gtol
(A.13)

with a (much) smaller support. From a deterministic regression viewpoint
(approximation theory), let us denote by poptm the polynomial in Pd

m(X) of
best uniform approximation for f on X, where we assume f ∈ C(D) with
X ⊂ D ⊂ Rd, D being a compact domain (or even lower-dimensional man-
ifold), and by Em(f ;X) = infp∈Pd

m(X) ∥f − p∥ℓ∞(X) = ∥f − poptm |ℓ∞(X) and
Em(f ;D) = infp∈Pd

m(D) ∥f − p∥L∞(D) the best uniform polynomial approxima-

tion errors on X and D. Then, denoting by Lu(k)

m and Lw
mf = Lv

mf the weighted
least squares polynomial approximation of f (cf. (A.5)) by the near G-optimal

weights u(k) and w, respectively, with the same reasoning used to obtain (A.6)
and by (A.13) we can write the operator norm estimates

⃦⃦⃦
Lu(k)

m

⃦⃦⃦
, ∥Lw

m∥ ≤
√︂ ˜︁Nm ≤

√︄
Nm

gtol
, ˜︁Nm =

Nm

Gm(u(k))
=

Nm

Gm(v)
.

Moreover, since Lw
mp = p for any p ∈ Pd

m(X), we can write the near optimal
estimate

∥f − Lw
mf∥ℓ∞(X)

≤ ∥f − poptm ∥ℓ∞(X) + ∥poptm − Lw
mpoptm ∥ℓ∞(X) + ∥Lw

mpoptm − Lw
mf∥ℓ∞(X)

= ∥f − poptm ∥ℓ∞(X) + ∥Lw
mpoptm − Lw

mf∥ℓ∞(X) ≤ (1 + ∥Lw
m∥)Em(f ;X)

≤

(︄
1 +

√︄
Nm

gtol

)︄
Em(f ;X)

≤

(︄
1 +

√︄
Nm

gtol

)︄
Em(f ;D) ≈

(︂
1 +

√︁
Nm

)︂
Em(f ;D) .

Notice that Lw
mf is constructed by sampling f only at the compressed support

{ξℓ} ⊂ X. The error depends on the regularity of f on D ⊃ X, with a rate that
can be estimated whenever D admits a multivariate Jackson-like inequality, cf.
[113].

136

A.4 Numerical examples

In this section, we perform several tests on the computation of d-variate near
G-optimal Tchakaloff designs, from low to moderate dimension d. In practice,
we are able to treat, on a personal computer, large-scale problems where |X| ×
dim(P d

2m) is up to 108–109, with dim(P d
2m) =

(︁
2m+d

d

)︁
=
(︁
2m+d
2m

)︁
. Recall that

the main memory requirement is given by the N2m × M matrix UT in the
compression process solved by the LHDM algorithm, whereM = |X| andN2m =
dim(P d

2m(X)) ≤ dim(P d
2m).

Given the dimension d > 1 and the polynomial degree m, the routine LHDM

empirically sets the parameter kmax as follows kmax = ⌈
(︁
2m+d

d

)︁
/(m(d − 1))⌉,

while the threshold is τθ = cos(π2 − θ), θ ≈ 0.22. Here, we set τu = τw = 0. All
the tests are performed on a workstation with a 32 GB RAM and an Intel Core
i7-8700 CPU @ 3.20 GHz.

A.4.1 Complex shapes d = 3

To show the flexibility of the package dCATCH, we compute near G-optimal
designs on a “multibubble” D ⊂ R3 (i.e., the union of a finite number of non-
disjoint balls), which can have a very complex shape with a boundary surface
very difficult to describe analytically. Indeed, we are able to implement near
optimal regression on quite complex solids, arising from finite union, intersection
and set difference of simpler pieces, possibly multiply-connected, where for each
piece we have available the indicator function via inequalities. Grid-points or
low-discrepancy points, for example, Halton points, of a surrounding box, could
be conveniently used to discretize the solid. Similarly, thanks to the adaptation
of the method to the actual dimension of the polynomial spaces, we can treat
near optimal regression on the surfaces of such complex solids, as soon as we
are able to discretize the surface of each piece by point sets with good covering
properties (for example, we could work on the surface of a multibubble by
discretizing each sphere via one of the popular spherical point configurations,
cf. [91]).

We perform a test at regression degree m = 10 on the 5-bubble shown in
Figure A.1b. The initial support X consists in the M = 18 915 points within
64,000 low discrepancy Halton points, falling in the closure of the multibub-
ble shown in Figure A.1b together with Multibubble with the 1763 compressed
Tchakaloff points. Results are summarized in Figure A.1a, showing the evo-
lution of the cardinality of the passive set P along the iterations of the three
LH algorithms, and Table A.3: here, compr = M / mean(cpts) is the mean
compression ratio obtained by the three methods listed; tLH/tTitt is the ra-
tio between the execution time of LH and that of the Titterington algorithm;
tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of LH (LHI)
and that of LHDM ; cpts is the number of compressed Tchakaloff points and
momerr is the final moment residual.

137

(a) Cardinality of the passive set per iteration.

(b) Compressed support.

Figure A.1: Multibubble test case, regression degree m = 10.

Table A.3: Results for the multibubble numerical test.

Test LH LHI LHDM

m M compr tLH/tTitt tLH/tLHDM cpts momerr tLHI/tLHDM cpts momerr cpts momerr

10 18 915 11 40.0 2.7 1755 3.4× 10−8 3.2 1758 3.2× 10−8 1755 1.5× 10−8

A.4.2 Hypercubes: Chebyshev grids

In a recent paper [27], a connection has been studied between the statistical
notion of G-optimal design and the approximation theoretic notion of admissi-
ble mesh for multivariate polynomial approximation, deeply studied in the last

138

decade after [38] (see, e.g., [22, 54] with the references therein). In particular,
it has been shown that near G-optimal designs on admissible meshes of suitable
cardinality have a G-efficiency on the whole d-cube that can be made convergent
to 1. For example, it has been proved by the notion of Dubiner distance and suit-
able multivariate polynomial inequalities, that a design with G-efficiency γ on a
grid X of (2km)d Chebyshev points (the zeros of T2km(t) = cos(2km arccos(t)),
t ∈ [−1, 1]), is a design for [−1, 1]d with G-efficiency γ(1 − π2/(8k2)). For ex-
ample, taking k = 3 a near G-optimal Tchakaloff design with γ = 0.99 on a
Chebyshev grid of (6m)d points is near G-optimal on [−1, 1]d with G-efficiency
approximately 0.99 · 0.86 ≈ 0.85, and taking k = 4 (i.e., a Chebyshev grid of
(8m)d points) the corresponding G-optimal Tchakaloff design has G-efficiency
approximately 0.99 · 0.92 ≈ 0.91 on [−1, 1]d (in any dimension d).

We perform three tests in different dimension spaces and at different regres-
sion degrees. Results are shown in Figure A.2 and Table A.4. Here, compr =

M / mean(cpts) is the mean compression ratio obtained by the three meth-
ods listed; tLH/tTitt is the ratio between the execution time of LH and that of
Titterington algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the ex-
ecution time of LH (LHI) and that of LHDM; cpts is the number of compressed
Tchakaloff points and momerr is the final moment residual.

Table A.4: Results of numerical tests on M = (2km)d Chebyshev’s nodes, with
k = 4, with different dimensions and degrees.

Test LH LHI LHDM

d m M compr tLH/tTitt tLH/tLHDM cpts momerr tLHI/tLHDM cpts momerr cpts momerr

3 6 110 592 250 0.4 3.1 450 5.0× 10−7 3.5 450 3.4× 10−7 450 1.4× 10−7

4 3 331 776 1607 0.2 2.0 207 8.9× 10−7 3.4 205 9.8× 10−7 207 7.9× 10−7

5 2 1 048 576 8571 0.1 1.4 122 6.3× 10−7 1.5 123 3.6× 10−7 122 3.3× 10−7

A.4.3 Hypercubes: low-discrepancy points

The direct connection of Chebyshev grids with near G-optimal designs discussed
in the previous subsection suffers rapidly of the curse of dimensionality, so only
regression at low degree in relatively low dimension can be treated. On the
other hand, in sampling theory a number of discretization nets with good space-
filling properties on hypercubes has been proposed and they allow to increase
the dimension d. We refer in particular to Latin hypercube sampling or low-
discrepancy points (Sobol, Halton and other popular sequences); see e.g. [66].
These families of points give a discrete model of hypercubes that can be used
in many different deterministic and statistical applications.

Here we consider a discretization made via Halton points. We present in
particular two examples, where we take as finite design spaceX a set ofM = 105

Halton points, in d = 4 with regression degree m = 5, and in d = 10 with m = 2.
In both examples, dim(P d

2m) =
(︁
2m+d

d

)︁
=
(︁
2m+d
2m

)︁
=
(︁
14
4

)︁
= 1001, so that the

largest matrix involved in the construction is the 1001 × 100 000 Chebyshev-
Vandermonde matrix C for degree 2m on X constructed at the beginning of the
compression process (by dORTHVAND within dCATCH to compute U2m in (A.12)).

139

(a) d = 3, n = 6, M = 110 592. (b) d = 4, n = 3, M = 331 776.

(c) d = 5, n = 2, M = 1 048 576.

Figure A.2: Cardinality of the passive set per iteration of the three LH algo-
rithms for Chebyshev nodes’ tests.

Results are shown in Figure A.3 and Table A.5. Here, compr = M / mean(cpts)

is the mean compression ratio obtained by the three methods listed; tLH/tTitt is
the ratio between the execution time of LH and that of Titterington algorithm;
tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of LH (LHI)
and that of LHDM; cpts is the number of compressed Tchakaloff points and
momerr is the final moment residual.

Remark 2. The computational complexity of dCATCH mainly depends on the
QR decompositions, which clearly limit the maximum size of the problem and
mainly determine the execution time. Indeed, the computational complexity of
a QR factorization of a matrix of size nr × nc, with nc ≤ nr, is high, namely
2(n2

c nr − n3
c/3) ≈ 2n2

c nr (see e.g. [81]).
Titterington algorithm performs a QR factorization of a M ×Nm matrix at

each iteration, with the following overall computational complexity

CTitt ≈ 2k̄ M N2
m ,

140

where k̄ is the number of iterations necessary for convergence, that depends on
the desired G-efficiency.

On the other hand, the computational cost of one iteration of the Lawson-
Hanson algorithm, fixed the passive set P , is given by the solution of an un-
constrained least squares problem problem with a N2m × |P | matrix, which ap-
proximately takes 2N2m|P |2 flops, that is the cost of the corresponding QR de-
composition.However, as experimental results confirm, the evolution of the set
P along the execution of the algorithm may vary significantly depending on the
experiment settings, so that the exact overall complexity is hard to estimate.
Lower and upper bounds are available, but may lead to heavy under- and over-
estimations, respectively; cf. [126] for a discussion on complexity issues.

(a) d = 10,m = 2,M = 10 000 . (b) d = 10,m = 2,M = 100 000 .

(c) d = 4,m = 5,M = 10 000 . (d) d = 4,m = 5,M = 100 000.

Figure A.3: Cardinality of the passive set per iteration of the three LH algo-
rithms for Halton points’ tests.

141

Table A.5: Results of numerical tests on Halton points.

Test LH LHI LHDM

d m M compr tLH/tTitt tLH/tLHDM cpts momerr tLHI/tLHDM cpts momerr cpts momerr

10 2 10 000 10 41.0 1.9 990 1.1 × 10−8 1.9 988 9.8 × 10−9 990 9.4 × 10−9

10 2 100 000 103 6.0 3.1 968 3.6 × 10−7 2.8 973 2.7 × 10−7 968 4.2 × 10−7

4 5 10 000 10 20.2 2.3 997 9.7 × 10−9 2.4 993 1.3 × 10−8 997 2.1 × 10−9

4 5 100 000 103 2.0 3.8 969 6.6 × 10−7 3.8 964 6.3 × 10−7 969 5.3 × 10−7

A.5 Conclusions and outlook

In this appendix, we have presented dCATCH [63], a numerical software package
for the computation of a d-variate near G-optimal polynomial regression design
of degree m on a finite design space X ⊂ Rd. The mathematical foundation
is discussed connecting statistical design theoretic and approximation theoretic
aspects, with a special emphasis on deterministic regression (Weighted Least
Squares). The package takes advantage of an accelerated version of the classi-
cal NNLS Lawson-Hanson solver discussed in Chapter 4 and applied to design
compression. As a few examples of use cases of this package we have shown the
results on a complex shape (multibubble) in three dimensions, and on hyper-
cubes discretized with Chebyshev grids and with Halton points, testing different
combinations of dimensions and degrees which generate large-scale problems for
a personal computer.

The present package, dCATCH works for any discrete measure on a discrete
set X. Indeed, it could be used, other than for design compression, also in the
compression of d-variate quadrature formulas, even on lower-dimensional man-
ifolds, to give an example. We may observe that with this approach we can
compute a d-variate compressed design starting from a high-cardinality sam-
pling set X, that discretizes a continuous compact set (see Appendix A.4.2 and
Appendix A.4.3). This design allows an m-th degree near optimal polynomial
regression of a function on the whole X, by sampling on a small design sup-
port. We stress that the compressed design is function-independent and thus
can be constructed “once and for all” in a pre-processing stage. This approach
is potentially useful, for example, for the solution of d-variate parameter esti-
mation problems, where we may think to model a nonlinear cost function by
near optimal polynomial regression on a discrete d-variate parameter space X;
cf., for example, [12, 11] for instances of parameter estimation problems from
mechatronics applications (Digital Twins of controlled systems) and references
on the subject. Minimization of the polynomial model could then be accom-
plished by popular methods developed in the growing research field of Polyno-
mial Optimization, such as Lasserre’s SOS (Sum of Squares) and measure-based
hierarchies, and other recent methods; cf., for example, [99, 53, 106] with the
references therein.

From a computational viewpoint, the results presented show relevant speed-
ups in the compression stage, with respect to the standard Lawson-Hanson
algorithm, in terms of the number of iterations required and of computing time
within the Matlab scripting language. In order to further decrease the execution

142

times and to allow us to tackle larger design problems, a proper strategy should
be devised in order to break the curse of dimensionality which affects the size
of the Vandermonde-like matrix on the regression degree and/or the number of
dimensions increase.

143

Bibliography

[1] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Performance,
Design, and Autotuning of Batched GEMM for GPUs. In J. M. Kunkel,
P. Balaji, and J. Dongarra, editors, High Performance Computing, pages
21–38, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
41321-1.

[2] P. Amodio and G. Romanazzi. Algorithm 859: BABDCR - a Fortran 90
package for the solution of bordered ABD linear systems. ACM Trans.
Math. Softw., 32:597–608, 01 2006.

[3] P. Amodio and G. Romanazzi. Parallel Numerical Solution of ABD and
BABD linear systems arising from BVPs. Scalable Computing: Practice
and Experience, 10, 01 2009.

[4] P. Amodio, J. R. Cash, G. Roussos, R. W.Wright, G. Fairweather, I. Glad-
well, G. L. Kraut, and M. Paprzycki. Almost block diagonal linear sys-
tems: sequential and parallel solution techniques, and applications. Nu-
merical Linear Algebra with Applications, 7(5):275–317, 2000.

[5] E. Anderson and Y. Saad. Solving sparse triangular systems on parallel
computers. Int. J. High Speed Comput., 1, 06 1989.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8
(paperback).

[7] H. Anzt, E. Chow, and J. Dongarra. Iterative sparse triangular solves for
preconditioning. In J. L. Träff, S. Hunold, and F. Versaci, editors, Euro-
Par 2015: Parallel Processing, pages 650–661, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[8] H. Anzt, E. Chow, J. Saak, and J. Dongarra. Updating incomplete factor-
ization preconditioners for model order reduction. Numerical Algorithms,
73(3):611–630, Nov 2016.

144

[9] H. Anzt, T. K. Huckle, J. Bräckle, and J. Dongarra. Incomplete sparse
approximate inverses for parallel preconditioning. Parallel Computing, 71,
Oct 2017. doi: 10.1016/j.parco.2017.10.003.

[10] A. Atkinson, A. Donev, and R. Tobias. Optimum Experimental Designs,
with SAS. Oxford University Press, 01 2007. ISBN 978-0-19-929659-0.

[11] A. Beghi, F. Marcuzzi, and M. Rampazzo. A virtual laboratory for the
prototyping of cyber-physical systems. IFAC-PapersOnLine, 49(6):63 –
68, 2016.

[12] A. Beghi, F. Marcuzzi, P. Martin, F. Tinazzi, and M. Zigliotto. Virtual
prototyping of embedded control software in mechatronic systems: A case
study. Mechatronics, 43:99 – 111, 2017.

[13] S. Bellavia, D. Bertaccini, and B. Morini. Nonsymmetric Precondi-
tioner Updates in Newton–Krylov Methods for Nonlinear Systems. SIAM
Journal on Scientific Computing, 33(5):2595–2619, 2011. doi: 10.1137/
100789786.

[14] M. Benzi. Preconditioning techniques for large linear systems: A survey.
Journal of Computational Physics, 182, 2002. doi: 10.1006/jcph.2002.
7176.

[15] M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for
nonsymmetric linear systems. SIAM Journal on Scientific Computing, 19
(3):968–994, 1998. doi: 10.1137/S1064827595294691.

[16] E. Bertolazzi, F. Biral, and M. Da Lio. Symbolic-numeric efficient so-
lution of optimal control problems for multibody systems. Journal of
Computational and Applied Mathematics, 185(2):404 – 421, 2006. ISSN
0377-0427. doi: https://doi.org/10.1016/j.cam.2005.03.019. Special Issue:
International Workshop on the Technological Aspects of Mathematics.

[17] C. Bischof and P. Hansen. A block algorithm for computing rank-revealing
QR factorizations. Numerical Algorithms, 2:371–391, 10 1992. doi: 10.
1007/BF02139475.

[18] C. Bischof and G. Quintana-Ort́ı. Computing Rank-Revealing QR Fac-
torizations of Dense Matrices. ACM Trans. Math. Softw., 24:226–253, 06
1998. doi: 10.1145/290200.287637.

[19] C. Bischof and G. Quintana-Ort́ı. Algorithm 782: Codes for Rank-
Revealing QR Factorizations of Dense Matrices. ACM Transactions on
Mathematical Software, 24:254–257, 07 1998. doi: 10.1145/290200.287638.

[20] J. R. Bischof. A block QR factorization algorithm using restricted pivot-
ing. In Supercomputing ’89:Proceedings of the 1989 ACM/IEEE Confer-
ence on Supercomputing, pages 248–256, 1989. doi: 10.1145/76263.76290.

145

[21] T. Bloom, L. Bos, N. Levenberg, and S. Waldron. On the convergence of
optimal measures. Constructive Approximation, 32(1):159–179, 2010.

[22] T. Bloom, L. Bos, J.-P. Calvi, and N. Levenberg. Polynomial interpolation
and approximation in Cd. In Annales Polonici Mathematici, pages 53–81,
2012.

[23] H. G. Bock. Recent advances in parameter identification techniques for
o.d.e. Numerical treatment of inverse problems in differential and integral
equations, pages 95–121, 1983.

[24] L. Bos. Some remarks on the fejér problem for lagrange interpolation in
several variables. Journal of approximation theory, 60(2):133–140, 1990.

[25] L. Bos and M. Vianello. CaTchDes: MATLAB codes for
Caratheodory–Tchakaloff Near-Optimal Regression Designs. SoftwareX,
10:100349, 2019. ISSN 2352-7110. doi: https://doi.org/10.1016/j.softx.
2019.100349.

[26] L. Bos, F. Piazzon, and M. Vianello. Near optimal polynomial regression
on norming meshes. In 2019 13th International conference on Sampling
Theory and Applications (SampTA), pages 1–4. IEEE, 2019.

[27] L. Bos, F. Piazzon, and M. Vianello. Near g-optimal tchakaloff designs.
Computational Statistics, 35(2):803–819, 2020.

[28] F. Boyer, C. Lapuerta, S. Minjeaud, and B. Piar. A local adaptive re-
finement method with multigrid preconditionning illustrated by multi-
phase flows simulations. ESAIM: Proceedings, 27:pp 15–53, 2009. doi:
10.1051/proc/2009018.

[29] R. Bro and S. Jong. A Fast Non-negativity-constrained Least Squares
Algorithm. Journal of Chemometrics, 11:393–401, 09 1997. doi: 10.1002/
(SICI)1099-128X(199709/10)11:53.0.CO;2-L.

[30] A. N. Brooks and T. J. Hughes. Streamline upwind/petrov-galerkin for-
mulations for convection dominated flows with particular emphasis on
the incompressible navier-stokes equations. Computer Methods in Applied
Mechanics and Engineering, 32(1):199 – 259, 1982. ISSN 0045-7825. doi:
https://doi.org/10.1016/0045-7825(82)90071-8.

[31] A. M. Bruckstein, M. Elad, and M. Zibulevsky. On the uniqueness of
nonnegative sparse solutions to underdetermined systems of equations.
IEEE Transactions on Information Theory, 54(11):4813–4820, 2008. doi:
10.1109/TIT.2008.929920.

[32] J. Burkardt. MONOMIAL: A Matlab Library for Multivariate Mono-
mials. https://people.sc.fsu.edu/~jburkardt/m_src/monomial/

monomial.html, 2020. Accessed on 1 June 2020.

146

https://people.sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html
https://people.sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html

[33] P. Businger and G. H. Golub. Linear Least Squares Solutions by House-
holder Transformations. Numer. Math., 7(3):269–276, June 1965. ISSN
0029-599X. doi: 10.1007/BF01436084.

[34] T. T. Cai, G. Xu, and J. Zhang. On recovery of sparse signals via ℓ1
minimization. IEEE Transactions on Information Theory, 55(7):3388–
3397, 2009. doi: 10.1109/TIT.2009.2021377.

[35] C. Calgaro, E. Creusè, and T. Goudon. An hybrid finite volume–finite el-
ement method for variable density incompressible flows. Journal of Com-
putational Physics, 227, 2008. doi: 10.1016/j.jcp.2008.01.017.

[36] C. Calgaro, E. Chane-Kane, E. Creusè, and T. Goudon. l∞-stability of
vertex-based muscl finite volume schemes on unstructured grids: Simula-
tion of incompressible flows with high density ratios. Journal of Compu-
tational Physics, 229, 2010. doi: 10.1016/j.jcp.2010.04.034.

[37] C. Calgaro, J.-P. Chehab, and Y. Saad. Incremental incomplete LU fac-
torizations with applications. Numerical Linear Algebra with Applications,
17, 2010. doi: 10.1002/nla.756.

[38] J.-P. Calvi and N. Levenberg. Uniform approximation by discrete least
squares polynomials. Journal of Approximation Theory, 152(1):82–100,
2008.

[39] E. J. Candès. The restricted isometry property and its implications
for compressed sensing. Comptes Rendus Mathematique, 346(9):589–592,
2008. ISSN 1631-073X. doi: https://doi.org/10.1016/j.crma.2008.03.014.

[40] C. Carathéodory. Über den variabilitätsbereich der fourier’schen kon-
stanten von positiven harmonischen funktionen. Rendiconti Del Circolo
Matematico di Palermo (1884-1940), 32(1):193–217, 1911.

[41] G. Celant and M. Broniatowski. Interpolation and Extrapolation Optimal
Designs 2: Finite Dimensional General Models. John Wiley & Sons, Ltd,
2017. ISBN 9781119422327. doi: https://doi.org/10.1002/9781119422327.
fmatter.

[42] T. F. Chan. Rank revealing QR factorizations. Linear Algebra and its
Applications, 88-89:67 – 82, 1987. ISSN 0024-3795. doi: https://doi.org/
10.1016/0024-3795(87)90103-0.

[43] S. Chandrasekaran and I. C. F. Ipsen. On Rank-Revealing Factorisations.
SIAM Journal on Matrix Analysis and Applications, 15(2):592–622, 1994.
doi: 10.1137/S0895479891223781.

[44] S. Chen and D. Donoho. Basis pursuit. In Proceedings of 1994 28th
Asilomar Conference on Signals, Systems and Computers, volume 1, pages
41–44 vol.1, 1994. doi: 10.1109/ACSSC.1994.471413.

147

[45] S. C. Chen, D. J. Kuck, and A. H. Sameh. Practical parallel band trian-
gular system solvers. ACM Trans. Math. Softw., 4(3):270–277, Sept. 1978.
ISSN 0098-3500. doi: 10.1145/355791.355797.

[46] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. SIAM Rev., 43(1):129–159, Jan. 2001. ISSN 0036-1445.
doi: 10.1137/S003614450037906X.

[47] A. J. Chorin. Numerical solution of the navier-stokes equa-
tions. Mathematics of Computation, 22, 1968. doi: 10.1090/
s0025-5718-1968-0242392-2.

[48] E. Chow and A. Patel. Fine-Grained Parallel Incomplete LU Factorization.
SIAM Journal on Scientific Computing, 37(2):C169–C193, 2015. doi: 10.
1137/140968896.

[49] E. Chow, H. Anzt, J. Scott, and J. Dongarra. Using jacobi iterations and
blocking for solving sparse triangular systems in incomplete factorization
preconditioning. Journal of Parallel and Distributed Computing, pages –,
2018. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2018.04.017.

[50] A. H. Coppola-Owen and R. Codina. Improving Eulerian two-phase flow
finite element approximation with discontinuous gradient pressure shape
functions. International Journal for Numerical Methods in Fluids, 49:
1287–1304, Dec. 2005. doi: 10.1002/fld.963.

[51] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 1969 24th National Conference, ACM ’69,
pages 157–172, New York, NY, USA, 1969. ACM. doi: 10.1145/800195.
805928.

[52] Y. De Castro, F. Gamboa, D. Henrion, R. Hess, and J.-B. Lasserre. Ap-
proximate optimal designs for multivariate polynomial regression. The
Annals of Statistics, 47(1):127–155, 2019.

[53] E. de Klerk and M. Laurent. A survey of semidefinite programming ap-
proaches to the generalized problem of moments and their error analysis.
In World Women in Mathematics 2018, pages 17–56. Springer, 2019.

[54] S. De Marchi, F. Piazzon, A. Sommariva, and M. Vianello. Polynomial
meshes: Computation and approximation. In Proceedings of the 15th
International Conference on Computational and Mathematical Methods
in Science and Engineering, pages 414–425, 2015.

[55] J. Demmel, L. Grigori, M. Gu, and H. Xiang. Communication Avoiding
Rank Revealing QR Factorization with Column Pivoting. SIAM Journal
on Matrix Analysis and Applications, 36:55–89, 01 2015. doi: 10.1137/
13092157X.

148

[56] G. Deolmi and F. Marcuzzi. A parabolic inverse convection-diffusion-
reaction problem solved using space-time localization and adaptivity. Ap-
plied Mathematics and Computation, 219(16):8435–8454, 2013.

[57] M. Dessole. Personal webpage. https://mdessole.github.io/, 2021.
Accessed on 23 September 2021.

[58] M. Dessole and F. Marcuzzi. Fully iterative ILU preconditioning of the
unsteady Navier–Stokes equations for GPGPU. Computers & Mathe-
matics with Applications, 77(4):907 – 927, 2019. ISSN 0898-1221. doi:
https://doi.org/10.1016/j.camwa.2018.10.037.

[59] M. Dessole and F. Marcuzzi. A massively parallel algorithm for Bordered
Almost Block Diagonal Systems on GPUs. Numerical Algorithms, 2020.
ISSN 1572-9265. doi: https://doi.org/10.1007/s11075-020-00931-8.

[60] M. Dessole and F. Marcuzzi. Deviation Maximization for Rank-Revealing
QR Factorizations. Preprint, June 2021.

[61] M. Dessole, F. Marcuzzi, and M. Vianello. Accelerating the Lawson-
Hanson NNLS solver for large-scale Tchakaloff regression designs.
Dolomites Research Notes on Approximation, 13:20 – 29, 2020. ISSN
2035-6803. doi: http://dx.doi.org/10.14658/PUPJ-DRNA-2020-1-3.

[62] M. Dessole, F. Marcuzzi, and M. Vianello. dCATCH—A Numerical Pack-
age for d-Variate Near G-Optimal Tchakaloff Regression via Fast NNLS.
Mathematics, 8, 7 2020. doi: https://doi.org/10.3390/math8071122.

[63] M. Dessole, F. Marcuzzi, and M. Vianello. dCATCH: A Numerical
Package for Compressed d-Variate Near G-Optimal Regression. https:

//www.math.unipd.it/~marcov/MVsoft.html, 2020. Accessed on 1 June
2020.

[64] M. Dessole, M. Dell’Orto, and F. Marcuzzi. The Lawson-Hanson Al-
gorithm with Deviation Maximization: Finite Convergence and Sparse
Recovery. Preprint, August 2021.

[65] H. Dette, A. Pepelyshev, and A. Zhigljavsky. Improving updating rules in
multiplicative algorithms for computing d-optimal designs. Computational
Statistics & Data Analysis, 53(2):312–320, 2008.

[66] J. Dick and F. Pillichshammer. Digital nets and sequences: discrepancy
theory and quasi–Monte Carlo integration. Cambridge University Press,
2010.

[67] D. Donoho. Compressed sensing. Information Theory, IEEE Transactions
on, 52:1289 – 1306, 05 2006. doi: 10.1109/TIT.2006.871582.

[68] D. Donoho and X. Huo. Uncertainty principles and ideal atomic decom-
position. IEEE Transactions on Information Theory, 47(7):2845–2862,
2001. doi: 10.1109/18.959265.

149

https://mdessole.github.io/
https://www.math.unipd.it/~marcov/MVsoft.html
https://www.math.unipd.it/~marcov/MVsoft.html

[69] D. L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the Na-
tional Academy of Sciences, 100(5):2197–2202, 2003.

[70] Z. Drmač and Z. Bujanović. On the Failure of Rank-Revealing QR Fac-
torization Software – A Case Study. ACM Trans. Math. Softw., 35(2),
July 2008. ISSN 0098-3500. doi: 10.1145/1377612.1377616.

[71] J. A. Duersch and M. Gu. Randomized QR with Column Pivoting. SIAM
Journal on Scientific Computing, 39(4):C263–C291, 2017. doi: 10.1137/
15M1044680.

[72] M. Elad and A. M. Bruckstein. A generalized uncertainty principle and
sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 48:
2558–2567, 2002.

[73] G. Fairweather and I. Gladwell. Algorithms for Almost Block Diagonal
Linear Systems. SIAM Review, 46(1):49–58, 2004.

[74] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential
unconstrained minimization techniques. SIAM, 1990.

[75] L. V. Foster. Rank and null space calculations using matrix decomposition
without column interchanges. Linear Algebra and its Applications, 74:47–
71, 1986. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(86)
90115-1.

[76] S. Foucart and D. Koslicki. Sparse Recovery by Means of Nonnegative
Least Squares. Signal Processing Letters, IEEE, 21:498–502, 04 2014. doi:
10.1109/LSP.2014.2307064.

[77] E. Gallopoulos, B. Philippe, and A. Sameh. Parallelism in Matrix Com-
putations. Springer, 01 2016. ISBN 978-94-017-7188-7. doi: 10.1007/
978-94-017-7188-7.

[78] A. George. Nested dissection of a regular finite element mesh. Siam
Journal on Numerical Analysis, 10:345–363, 04 1973.

[79] V. Girault and P. Raviart. Finite element methods for Navier-Stokes
equations: theory and algorithms. Springer series in computational math-
ematics. Springer-Verlag, 1986. ISBN 9783540157960.

[80] G. Golub. Numerical Methods for Solving Linear Least Squares Problems.
Numer. Math., 7(3):206–216, June 1965. ISSN 0029-599X. doi: 10.1007/
BF01436075.

[81] G. Golub and C. Van Loan. Matrix Computations (4th ed.). Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2013. ISBN 9781421407944.

150

[82] G. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least
squares problems. Technical Report STAN-CS-76-559, Department of
Computer Science, Stanford University, 1976.

[83] M. Gu and S. C. Eisenstat. Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization. SIAM Journal on Scientific Comput-
ing, 17(4):848–869, 1996. doi: 10.1137/0917055.

[84] J. Guermond, P. Minev, and J. Shen. An overview of projection methods
for incompressible flows. Computer Methods in Applied Mechanics and
Engineering, 195:6011–6045, 09 2006.

[85] J.-L. Guermond and L. Quartapelle. A projection fem for variable density
incompressible flows. Journal of Computational Physics, 165(1):167 – 188,
2000. ISSN 0021-9991.

[86] J.-L. Guermond and A. Salgado. A splitting method for incompressible
flows with variable density based on a pressure poisson equation. Journal
of Computational Physics, 228, 2009. doi: 10.1016/j.jcp.2008.12.036.

[87] J.-L. Guermond and A. Salgado. Error analysis of a fractional time-
stepping technique for incompressible flows with variable density. SIAM
Journal on Numerical Analysis, 49, 01 2011. doi: 10.1137/090768758.

[88] J.-L. Guermond, A. Marra, and L. Quartapelle. Subgrid stabilized projec-
tion method for 2d unsteady flows at high reynolds numbers. Computer
Methods in Applied Mechanics and Engineering, 195(44):5857 – 5876,
2006. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2005.08.016.

[89] A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra. Framework
for Batched and GPU-resident Factorization Algorithms to Block House-
holder Transformations. In ISC High Performance, Frankfurt, Germany,
07-2015 2015. Springer, Springer.

[90] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical
Aspects of Linear Inversion. Society for Industrial and Applied Mathe-
matics, USA, 1999. ISBN 0898714036.

[91] D. P. Hardin, T. Michaels, and E. B. Saff. A comparison of popular point
configurations on S2. Dolomit. Res. Notes Approx. DRNA, 9:16–49, 2016.

[92] R. W. Hockney and C. R. Jesshope. Parallel Computers 2: architecture,
programming and algorithms. CRC Press, 1988.

[93] Y. P. Hong and C.-T. Pan. Rank-Revealing QR Factorizations and the
Singular Value Decomposition. Mathematics of Computation, 58(197):
213–232, 1992. ISSN 00255718, 10886842.

[94] T. K. Huckle and J. Bräckle. Incomplete sparse approximations of matri-
ces, inverses of matrices, and their factorizations. Submitted manuscript,
2015.

151

[95] L. Jörg and T. Petr. Convergence analysis of krylov subspace meth-
ods. GAMM-Mitteilungen, 27(2):153–173, 2005. doi: 10.1002/gamm.
201490008.

[96] W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin, 9:
757–801, 1966.

[97] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems.
Canadian Journal of Mathematics, 12:363–366, 1960.

[98] K. Kontovasilis, R. J. Plemmons, and W. J. Stewart. Block cyclic SOR for
Markov chains with p-cyclic infinitesimal generator. Linear Algebra and
its Applications, 154-156:145 – 223, 1991. ISSN 0024-3795. doi: https:
//doi.org/10.1016/0024-3795(91)90377-9.

[99] J. B. Lasserre. The moment-sos hierarchy. In Proceedings of the Inter-
national Congress of Mathematicians: Rio de Janeiro 2018, pages 3773–
3794. World Scientific, 2018.

[100] C. L. Lawson and R. J. Hanson. Solving least squares problems, volume 15.
SIAM, 1995.

[101] P.-L. Lions. Mathematical topics in fluid mechanics. - Incompressible mod-
els, volume 1 of Oxford Lecture Series in Mathematics and Its Applica-
tions, 3. OUP, 1996. ISBN 9780198514879,0198514875.

[102] D. A. Lorenz, M. E. Pfetsch, and A. M. Tillmann. Solving basis pursuit:
Heuristic optimality check and solver comparison. ACM Trans. Math.
Softw., 41(2), Feb. 2015. ISSN 0098-3500. doi: 10.1145/2689662.

[103] A. Mandal, W. K. Wong, and Y. Yu. Algorithmic searches for optimal
designs. Handbook of design and analysis of experiments, pages 755–783,
2015.

[104] M. Manguoglu, M. Koyutürk, A. Sameh, and A. Grama. Weighted matrix
ordering and parallel banded preconditioners for iterative linear system
solvers. SIAM J. Scientific Computing, 32:1201–1216, 01 2010.

[105] F. Marcuzzi, M. M. Cecchi, and M. Venturin. An anisotropic unstructured
triangular adaptive mesh algorithm based on error and error gradient
information. Mathematics and Computers in Simulation, 78(5-6):645–652,
2008.

[106] A. Martinez, F. Piazzon, A. Sommariva, and M. Vianello. Quadrature-
based polynomial optimization. Optimization Letters, 14(5):1027–1036,
2020.

[107] P. Martinsson. Blocked rank-revealing QR factorizations: How random-
ized sampling can be used to avoid single-vector pivoting. arXiv preprint
arXiv:1505.08115, 05 2015.

152

[108] M. Naumov. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the gpu. In NVIDIA Corp., Westford,
MA, USA, Tech. Rep. NVR-2011, volume 1, 2011.

[109] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2017. URL
https://docs.nvidia.com/cuda/. Version 9.1.

[110] NVIDIA Corporation. CUBLAS Library User Guide, 2018. URL https:

//docs.nvidia.com/cuda/cublas/index.html. Version 9.1.

[111] NVIDIA Corporation. CUSPARSE Library User Guide, 2018. URL
https://docs.nvidia.com/cuda/cusparse/index.html. Version 9.1.

[112] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 2019.
URL https://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html. Version 10.1.

[113] W. Pleśniak. Multivariate Jackson Inequality. Journal of computational
and applied mathematics, 233(3):815–820, 2009.

[114] E. Polizzi and A. H. Sameh. A parallel hybrid banded system solver: the
spike algorithm. Parallel Computing, 32(2):177 – 194, 2006. ISSN 0167-
8191. doi: https://doi.org/10.1016/j.parco.2005.07.005. Parallel Matrix
Algorithms and Applications (PMAA’04).

[115] L. F. Portugal, J. J. Júdice, and L. N. Vicente. A Comparison of Block
Pivoting and Interior-Point Algorithms for Linear Least Squares Problems
with Nonnegative Variables. Mathematics of Computation, 63(208):625–
643, 1994. ISSN 00255718, 10886842.

[116] F. Pukelsheim. Optimal Design of Experiments. Society for Industrial and
Applied Mathematics, 2006. doi: 10.1137/1.9780898719109.

[117] M. Putinar. A note on tchakaloff’s theorem. Proceedings of the American
Mathematical Society, 125(8):2409–2414, 1997.

[118] G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, R. A. V. D. Geijn, F. G. V. Zee,
and E. Chan. Programming matrix algorithms-by-blocks for thread-level
parallelism. ACM Trans. Math. Softw., 36(3), July 2009. ISSN 0098-
3500. doi: 10.1145/1527286.1527288. URL https://doi.org/10.1145/

1527286.1527288.

[119] G. Quintana-Ort́ı, X. Sun, and C. H. Bischof. A BLAS-3 Version of the
QR Factorization with Column Pivoting. SIAM Journal on Scientific
Computing, 19(5):1486–1494, 1998. doi: 10.1137/S1064827595296732.

[120] M. Radons. Direct solution of piecewise linear systems. Theoretical
Computer Science, 626:97–109, 2016. ISSN 0304-3975. doi: https:
//doi.org/10.1016/j.tcs.2016.02.009.

153

https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1145/1527286.1527288
https://doi.org/10.1145/1527286.1527288

[121] Y. Saad. A Flexible Inner-outer Preconditioned GMRES Algorithm.
SIAM J. Sci. Comput., 14(2):461–469, Mar. 1993. ISSN 1064-8275. doi:
10.1137/0914028.

[122] Y. Saad. Iterative methods for sparse linear systems. Society
for Industrial and Applied Mathematics, 2 edition, 2003. ISBN
9780898715347,0898715342.

[123] Á. Santos-Palomo and P. Guerrero-Garćıa. Solving a sequence of sparse
linear least squares subproblems. Technical Report MA-03-03, Dept. Appl.
Math., Univ. Málaga, 2003.

[124] R. Schreiber and C. Van Loan. A Storage-Efficient WY Representation
for Products of Householder Transformations. SIAM Journal on Scientific
and Statistical Computing, 10(1):53–57, 1989. doi: 10.1137/0910005.

[125] M. Slawski. Topics in learning sparse and low-rank models of non-negative
data. PhD thesis, Saarland University, Saarbrücken, Germany, 2014.

[126] M. Slawski. Nonnegative least squares: Comparison of algorithms. https:
//sites.google.com/site/slawskimartin/code, 2019. Accessed on 1
June 2020.

[127] M. Slawski and M. Hein. Non-negative least squares for high-dimensional
linear models: Consistency and sparse recovery without regularization.
Electronic Journal of Statistics, 7(1):3004–3056, 2013. Cited By :81.

[128] A. Sommariva and M. Vianello. Compression of multivariate discrete mea-
sures and applications. Numerical Functional Analysis and Optimization,
36(9):1198–1223, 2015.

[129] J. Stoer. On the Numerical Solution of Constrained Least-Squares Prob-
lems. SIAM Journal on Numerical Analysis, 8(2):382–411, 1971. ISSN
00361429.

[130] G. Strang. On the construction and comparison of difference schemes.
SIAM Journal on Numerical Analysis, 5, 09 1968. doi: 10.1137/0705041.

[131] V. Tchakaloff. Formules de cubatures mécaniques à coefficients non
négatifs. Bull. Sci. Math, 81(2):123–134, 1957.

[132] R. Temam. Sur l’approximation de la solution des équations de navier-
stokes par la méthode des pas fractionnaires (i). Archive for Rational
Mechanics and Analysis, 32, 2 1969. doi: 10.1007/bf00247678.

[133] R. Thompson. Principal submatrices IX: Interlacing inequalities for sin-
gular values of submatrices. Linear Algebra and its Applications, 5(1):
1–12, 1972. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(72)
90013-4.

154

https://sites.google.com/site/slawskimartin/code
https://sites.google.com/site/slawskimartin/code

[134] R. Tibshirani. Regression Shrinkage and Selection via the LASSO. Journal
of the Royal Statistical Society. Series B (Methodological), 58(1):267–288,
1996. ISSN 00359246.

[135] A. M. Tillmann and M. E. Pfetsch. The computational complexity of the
restricted isometry property, the nullspace property, and related concepts
in compressed sensing. IEEE Transactions on Information Theory, 60(2):
1248–1259, 2014. doi: 10.1109/TIT.2013.2290112.

[136] D. Titterington. Algorithms for computing D-optimal designs on a finite
design space. In In Proceedings of the 1976 Conference on Information
Science and Systems, volume 3, pages 213–216. Hopkins University: Bal-
timore, MD, USA, 1976.

[137] B. Torsney and R. Mart́ın-Mart́ın. Multiplicative algorithms for comput-
ing optimum designs. Journal of Statistical Planning and Inference, 139
(12):3947–3961, 2009.

[138] J. Tropp. Greed is good: algorithmic results for sparse approximation.
IEEE Transactions on Information Theory, 50(10):2231–2242, 2004. doi:
10.1109/TIT.2004.834793.

[139] G. Tryggvason. Numerical simulations of the rayleigh-taylor instability.
Journal of Computational Physics, 75(2):253 – 282, 1988. ISSN 0021-9991.
doi: https://doi.org/10.1016/0021-9991(88)90112-X.

[140] M. H. Van Benthem and M. R. Keenan. Fast algorithm for the solution of
large-scale non-negativity-constrained least squares problems. Journal of
Chemometrics, 18(10):441–450, 2004. doi: https://doi.org/10.1002/cem.
889.

[141] A. C. N. van Duin. Scalable Parallel Preconditioning with the Sparse
Approximate Inverse of Triangular Matrices. SIAM Journal on Ma-
trix Analysis and Applications, 20(4):987–1006, 1999. doi: 10.1137/
S0895479897317788.

[142] J. Varah. A lower bound for the smallest singular value of a matrix.
Linear Algebra and its Applications, 11(1):3 – 5, 1975. ISSN 0024-3795.
doi: https://doi.org/10.1016/0024-3795(75)90112-3.

[143] M. Wang and A. Tang. Conditions for a unique non-negative solution
to an underdetermined system. In Proceedings of the 47th Annual Aller-
ton Conference on Communication, Control, and Computing, Allerton’09,
page 301–307. IEEE Press, 2009. ISBN 9781424458707.

[144] M. Wang, W. Xu, and A. Tang. A Unique “Nonnegative” Solution to an
Underdetermined System: From Vectors to Matrices. IEEE Transactions
on Signal Processing, 59(3):1007–1016, Mar. 2011. doi: 10.1109/TSP.
2010.2089624.

155

[145] S. Wright. A Collection of Problems for Which Gaussian Elimination with
Partial Pivoting is Unstable. SIAM Journal on Scientific Computing, 14
(1):231–238, 1993. doi: 10.1137/0914013.

[146] S. J. Wright. Stable Parallel Algorithms For Two-Point Boundary Value
Problems. SIAM J. Sci. Statist. Comput, 13:742–764, 1992.

[147] J. Xiao, M. Gu, and J. Langou. Fast parallel randomized qr with col-
umn pivoting algorithms for reliable low-rank matrix approximations. In
2017 IEEE 24th international conference on high performance computing
(HiPC), pages 233–242. IEEE, 2017.

156

	Sommario
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation and goals
	Thesis outline and contributions
	Notation

	I High-performance algorithms for dense numerical linear algebra
	Deviation maximization for column selection
	Preliminary results
	About Singular Values
	About Strictly Diagonally Dominant matrices

	The deviation maximization algorithm
	Implementation of deviation maximization algorithm

	Rank-revealing QR factorization
	Rank-Revealing QR decompositions
	QR factorization with column pivoting
	QR factorization with deviation maximization pivoting
	Worst-case bound on the smallest singular value
	Termination criteria
	Implementation of QR with deviation maximization algorithm

	Numerical tests
	Concluding remarks

	Nonnegative least squares
	Solving nonnegative least squares problems
	The Lawson-Hanson algorithm
	Implementation of Lawson-Hanson algorithm
	A simple application of deviation maximization
	The Lawson-Hanson algorithm with deviation maximization
	Implementation of Lawson-Hanson with deviation maximization algorithm

	Sparse recovery
	Exact recovery
	Sparse recovery by nonnegative least squares
	Sparsity enhancing methods and approximate measurements

	Comparison with existing algorithms
	Conclusions and future perspectives

	II Parallel computing for sparse numerical linear algebra
	Solution of BABD systems
	Existing direct solvers for ABD and BABD systems
	Structured Orthogonal Factorization
	Data dependency analysis of SOF

	Solving BABD systems on GPUs
	Data dependency analysis
	Parallel structured orthogonal factorization
	Solving a sequence of BABD systems
	Implementation issues

	Numerical experiments
	Operation Count
	Execution Times

	Conclusions

	ILU preconditioning for Navier-Stokes equations
	Sparse triangular solves on GPUs
	On level-scheduling techniques
	An iterative approach

	Preconditioning a sequence of linear systems
	Comparison with existing parallel ILU algorithms

	Nonhomogeneous incompressible Navier-Stokes equations
	Hybrid CPU-GPU implementation
	Numerical simulations
	Test environment
	Convergence tests
	Dual-fluid flow
	Tradeoff between accuracy and efficiency

	Summary

	dCATCH numerical software
	Introduction
	G-optimal designs
	Computing near G-optimal compressed designs
	Numerical examples
	Complex shapes d=3
	Hypercubes: Chebyshev grids
	Hypercubes: low-discrepancy points

	Conclusions and outlook

	Bibliography

